VS2017 CUDA编程学习11:CUDA性能测量

本文介绍了CUDA程序性能测量的方法,通过CUDA事件API和NVIDIA Visual Profiler工具,详细讲解如何准确测量GPU运行时间,包括创建CUDA事件、C++实现CUDA事件例子以及Visual Profiler的使用步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


VS2017 CUDA编程学习1:CUDA编程两变量加法运算
VS2017 CUDA编程学习2:在GPU上执行线程
VS2017 CUDA编程学习3:CUDA获取设备上属性信息
VS2017 CUDA编程学习4:CUDA并行处理初探 - 向量加法实现
VS2017 CUDA编程学习5:CUDA并行执行-线程
VS2017 CUDA编程学习6: GPU存储器架构
VS2017 CUDA编程学习7:线程同步-共享内存
VS2017 CUDA编程学习8:线程同步-原子操作
VS2017 CUDA编程学习9:常量内存
VS2017 CUDA编程学习10:纹理内存
VS2017 CUDA编程学习实例1:CUDA实现向量点乘


前言

今天跟大家分享CUDA程序性能测量的方法:CUDA事件API和CUDA可视化性能分析工具-nvidia visual profiler


1. CUDA事件API

为什么要使用CUDA事件API而不是使用CPU时间统计的API来测量CUDA程序性能呢?这是因为CPU和GPU设备不是同步执行的,而是异步的,所以在CPU上使用时间统计的API来记录GPU的运行时间是不精确的。

CUDA事件,通俗地讲,就是GPU上记录时间戳的API,类似CPU上运行时间统计(e.g. clock_t, time_t, …);

使用CUDA事件主要包括3个步骤:1. 创建CUDA事件;2记录CUDA事件;3. 统计CUDA事件记录的时间;


2. C++ 实现CUDA事件例子

这里以在GPU上实现10000个数据的加法运算为例介绍CUDA事件的简单用法。

详细代码如下所示:

#include <stdio.h>
#include <cuda.h>
#include<cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <device_launch_parameters.h>

#define N 10000
#define THREADS_PER_BLOCK 100
#define
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值