- 博客(405)
- 资源 (3)
- 收藏
- 关注
原创 Windows-MCP:AI代理与Windows系统无缝集成的开源革命
Windows-MCP:开源语言操控系统重塑人机交互(2025) 微软生态迎来重大变革——Windows-MCP通过开源协议实现自然语言操控电脑,将LLM深度集成至操作系统内核。其核心技术突破在于: 三层架构:基础操作层(原子指令)、系统交互层(上下文感知)、高级控制层(任务链组合),直接调用Windows API实现像素级精准控制; 零视觉依赖:基于UI Automation框架访问控件树,规避传统OCR误差; 企业级性能:平均操作延迟<2秒,内存占用<50MB。 当前支持文件整理、跨应用数据
2025-08-05 12:44:49
142
原创 “可视化即服务(VaaS)”深度技术分析
摘要(150字): 本文深度解析可视化即服务(VaaS)的核心技术架构与行业应用。提出事件驱动的微服务架构,采用Delta State协议实现增量同步,网络负载降低92%。通过WASM渲染集群与分布式流水线设计,性能提升3倍。创新四层缓存体系实现毫秒级响应,GPU预处理使1亿数据点编码耗时降至0.8s。行业融合方面,工业场景优化时序数据库实现毫秒级写入,金融风控构建15ms低延迟闭环,医疗影像实现浏览器端3.2秒CT渲染。关键技术突破包括量子安全通信(仅0.3ms延迟损耗)和AI编译器(能耗降70%),证明
2025-08-04 18:29:39
628
原创 开源词汇语料库项目(Gensim)详细介绍
Gensim(Generating Similarities)是专注于 无监督主题建模 的开源 Python 库,旨在从非结构化文本中自动提取语义主题,平衡 计算效率 与 开发者体验。其核心使命是为大规模文本处理提供轻量级解决方案,尤其擅长处理网络级语料库(如维基百科、新闻档案)。
2025-08-04 12:57:35
510
原创 开源词汇语料库项目(vocabulary-corpus)详细介绍
vocabulary-corpus 通过工程化手段解决了词汇数据的结构化、批量化处理问题,其技术路径介于传统词典编纂(如 Oxford English Dictionary)与现代 NLP 工具(如 Gensim)之间,为语言教育及技术应用提供了不可替代的基础设施。
2025-08-04 12:46:15
387
原创 语料全生命周期管理开源工具
摘要:本文分类整理了满足语料全生命周期管理的开源工具。1)语料获取与清洗工具Ungoliant和corpusZh支持多语言数据爬取与结构化处理;2)语料加工工具opencorpora和HanLP提供标注与分析功能;3)语料治理工具vocabulary-corpus和Coze Loop实现质量评估与优化;4)全流程平台JESEME支持历时语义分析。文章对比了各工具的核心优势与适用场景,并给出学术研究、工业处理等场景的选型建议,所有工具均支持Docker部署。(144字)
2025-08-04 12:33:52
963
原创 字节Coze Loop 核心代码硬核拆解,逐个模块解析
Coze Loop 核心架构解析:字节跳动智能体管理引擎 摘要: Coze Loop 采用五层异构架构管理AI智能体全生命周期,包含感知层(百万级事件采集)、执行层(多模型路由)、决策层(质量评估)等核心模块。系统关键技术包括:1)无锁环形缓冲区实现高效数据采集;2)基于EWMA算法的动态模型路由(支持时延/成本/质量策略);3)Git式Prompt版本管理结合向量相似检索;4)熔断机制保障系统稳定性。创新点在于指数加权移动平均预测、动态成本优化和语义级Prompt差异分析,支持亿级智能体的工业级管理需求。
2025-08-02 11:32:55
887
原创 Coze Loop的系统架构、技术架构和部署架构解析
摘要: 字节跳动开源的Coze Loop平台采用五层异构架构(感知-执行-决策-监控-进化),实现AI智能体全生命周期管理。技术栈基于Go+React,支持多模型路由、智能评估矩阵和全链路追踪,具备微秒级响应和PB级日志处理能力。支持云原生轻量化部署,已落地金融、教育、工业场景,在10万并发下保持800ms响应。未来将聚焦推理成本优化和硬件加速,践行"观测驱动进化"理念。
2025-08-02 11:23:15
756
原创 Agent 框架协议“三部曲”:MCP、A2A、AG-UI
本文介绍了AI Agent框架中的三大核心交互协议:MCP(模型上下文协议)、A2A(Agent间通信协议)和AG-UI(智能体用户交互协议)。MCP标准化了Agent与外部工具的交互方式,支持多模型统一调用;A2A实现Agent间的任务协作与能力共享;AG-UI规范了Agent与前端应用的实时交互流程。三大协议分别解决工具集成、多Agent协作和用户交互的标准化问题,共同构建了完整的AI应用系统基础设施。当前MCP已获主流厂商支持并形成丰富生态,A2A在多Agent系统领域持续探索,AG-UI则为开发者提
2025-08-01 12:43:49
1027
1
原创 AI Visualization(AG-UI):图表配置即服务
AG-UI协议正推动数据可视化进入"配置即服务"时代,其核心突破包括:1)事件驱动的架构设计,通过STATE_DELTA等协议实现90%网络负载优化;2)零代码图表生成能力,支持LLM直接输出结构化配置;3)多Agent协同的智能交互范式。典型应用如工业场景实现10分钟报表开发、金融风控秒级响应。该技术将静态图表升级为包含筛选、钻取等功能的交互式服务接口,2025年有望成为可视化服务化的爆发拐点。安全方面集成动态水印、零信任控制等企业级特性。
2025-08-01 12:41:38
970
原创 AI Agent总体架构全景:从数据采集到智能决策
本文系统解析了企业级AIAgent系统的完整架构。首先,系统需要融合结构化数据(DaaS、数据仓库)和非结构化数据(专业网站、公众号)作为知识基础;其次通过MCP协议协调多模型协作,实现智能问数和RAG检索生成;底层依托Embedding、ReRank等技术保障问答质量;业务层通过LangChain、DB-GPT等实现推理分析;最后通过可视化组件呈现结果。整个架构实现了从数据接入、语义理解到智能问答的全链路闭环,为企业数字化转型提供了"智能大脑"解决方案。未来AI竞争将聚焦于架构设计与系
2025-08-01 12:33:58
15
原创 字节扣子Agent调度引擎解剖:万级并发下的毫秒级响应秘诀
摘要: 字节扣子(Coze)Agent调度引擎通过分层协同架构(负载均衡层-调度网关层-分布式调度器)与五大核心技术,实现万级并发下的毫秒级响应: RDMA零拷贝通信(跨节点时延0.8μs); 层级化状态管理(纳秒级热状态预加载); 流水线化并行执行(工作流时延降40%); PID实时扩缩容(秒级弹性伸缩); 向量化指令优化(AVX-512/GPU核融合)。 对比竞品,其单节点并发达12,000 QPS,平均延迟28ms,并通过轻量级Raft协议与请求对冲机制保障高可用。开源版本已释放同等能力。(148字)
2025-07-31 12:51:53
636
原创 字节扣子源码深度解剖
字节跳动开源项目Coze Studio采用Go+Python混合架构,通过进程隔离与零拷贝传输实现高性能文档处理,PDF解析支持多模态内容提取和表格重建。项目创新包括层级分块策略构建语义树、NL2SQL确定性输出及RRF融合排序算法,在合同检索等场景显著提升准确率。该项目提供标准化工具链和快速私有化部署方案,推动AI开发技术民主化。源码已开源,展示了工业级AI架构设计思路。
2025-07-31 12:46:42
992
原创 AI云原生:数智化时代AI Agent加速落地的技术基石与实践指南(THS)
AI云原生:重构智能时代的计算范式 中国AI大模型市场预计2025年突破千亿规模,云原生成为AI基础设施的核心标准。本文解析其技术架构与实践路径: 核心价值:通过容器化、自动化和弹性伸缩,解决传统AI的数据孤岛、资源碎片化等问题,工程效率提升18倍; 技术支柱: 异构GPU池化(NVIDIA MIG/华为昇腾NPU) 高速存储(Fluid加速模型加载延迟降低至8ms) RDMA网络(0.8μs超低延迟) Kubeflow全生命周期管理; 金融实践:AI-PaaS平台实现GPU资源利用率提升70%,弹性训练自
2025-07-30 12:56:33
1811
1
原创 Cloud Native for AI:下一代AI基础设施架构深度解析
云原生AI:重构AI工程化范式 云原生技术正在重塑AI开发运维流程,预计2025年市场规模将超120亿美元。本文系统解析云原生AI的核心架构与关键技术: 解决传统AI四大痛点:资源利用率低(GPU利用率<30%)、数据模型协同断层、推理弹性不足(扩容延迟导致SLA下降)等 三层解耦架构: 计算层:GPU虚拟化+拓扑感知调度(通信效率提升35%) 数据层:Fluid加速缓存使训练迭代速度提升4倍 服务层:KServe实现智能流量治理(P99延迟降低66%) 行业实践:自动驾驶训练周期从14天缩短至3天,
2025-07-30 12:44:24
674
原创 字节跳动将“扣子”(Coze)开源,一石激起千层
字节扣子开源,本质是 “用开放换生态,用工具锁场景” 。当个人开发者在笔记本跑通企业级Agent时,当山西数据中心绿电驱动万亿级推理时,这场技术平权运动已按下加速键。未来三年,AI竞争将从模型参数转向工具链渗透率——谁定义开发体验,谁就掌握生态主权。
2025-07-30 12:38:25
1010
原创 Docker VS Containerd
摘要: Docker与containerd在容器生态中定位不同,Docker是功能完整的开发平台,而containerd是轻量级运行时。Kubernetes默认采用containerd,主要因其原生支持CRI接口、资源占用更低(内存减少60%)、启动更快(延迟降低30%),且架构更简洁安全。Docker更适合开发调试,containerd更适配生产环境。二者镜像兼容,但日志和网络管理方式不同。这一选择体现了云原生架构通过标准化实现高效解耦的趋势。(150字)
2025-07-29 14:44:52
700
原创 Docker订阅计划及增值服务
摘要: Docker采用分层订阅模式(Personal/Pro/Team/Business),免费版限制镜像拉取次数(未验证10次/小时)和存储空间(2GB)。企业用户需付费使用Docker Desktop,存储超额按$0.07/GB/月计费。高频率拉取(如CI/CD)需购买增强服务账户(年费$9,950起)。2025年Bitnami免费容器将转为付费($50,000+/年)。开源替代方案包括Podman和Harbor等。企业需根据实际需求选择订阅或迁移开源方案以优化成本。(150字)
2025-07-29 13:11:01
946
原创 OmAgent的跨设备协同中枢-iLink协议
摘要: OmAgent的iLink协议通过统一语义抽象层与分布式调度引擎,实现异构智能终端(如无人机、机械臂)的高效协同,支持200+设备即插即用,降低80%接入成本。其技术亮点包括多模态数据同步、动态任务分配及国密级安全通信,已在巡检、电力等场景实现响应速度提升300%。相比传统方案(如ROS),iLink将设备集成时间从3周缩短至1小时,延迟降至50ms,并计划向轻量化与元宇宙场景延伸,成为物理世界的“神经中枢”。
2025-07-28 13:12:42
982
原创 EdgeOne Pages MCP
EdgeOne Pages MCP的本质是“将自然语言编译为边缘服务”,通过协议标准化与全球加速网络,解决传统开发的四大断层:环境配置→编码→测试→部署。
2025-07-28 13:06:14
1335
原创 具身智能体(Embodied Agent)介绍
具身智能体(Embodied Agent)是AI领域的前沿方向,通过物理或虚拟载体与环境交互,实现感知-决策-行动的闭环。其核心在于将AI从数字空间延伸至物理世界,结合多模态感知和实时反馈完成复杂任务。技术架构包含感知层(视觉语言空间模型)、决策层(世界模型+LLM协同)和行动层(端到端控制),在工业、矿山、服务等领域已有成功应用。当前面临数据稀缺、多模态融合等挑战,未来将向智能体联邦网络、认知架构进化等方向发展。2025年WAIC展示的成果表明,该技术正从实验室迈向规模化应用,有望突破传统AI的认知局限。
2025-07-28 12:55:47
804
原创 AI时代PaaS层的模式创新-智能体即服务(Agent as a Service, AaaS)
用“技术-模式-价值”三层结构回应比较清晰:先说明智能体封装、编排引擎等技术支撑,再解释零代码/订阅制等商业模式创新,最后用可量化的行业价值收尾。避免重复之前案例,补充些新数据比如“某保险智能体理赔处理时间从3天缩短至4小时”会更直观。
2025-07-25 12:46:38
786
原创 DataFlow-启动libtiff和libjpeg符号版本不兼容的问题
摘要 该错误报告描述了PyMuPDF依赖库libtiff与libjpeg的版本冲突问题。错误表现为libtiff.so.6需要jpeg12_write_raw_data函数,但当前libjpeg.so.8中缺少该符号。文章分析了根本原因,包括符号版本冲突和依赖链问题,并提供了四种解决方案:强制安装兼容版本、使用conda统一管理依赖、重建链接和使用Docker容器。此外还给出了验证方法、备选源码编译方案以及关键预防措施,特别建议在Linux环境中优先考虑Docker方案。
2025-07-25 09:44:28
801
原创 DataFlow-安装 pymupdf失败
摘要:安装pymupdf时因网络超时导致MuPDF源码下载失败,可通过手动下载并指定路径、使用Conda安装、配置代理或升级工具解决。若遇防火墙限制,需检查网络设置或更换DNS。最终通过import fitz验证安装成功,若问题持续可联系依赖库维护者。(149字)
2025-07-24 16:30:06
283
原创 颠覆原型设计!Readdy.ai实战测评:用自然语言3分钟生成高保真前端页面(THS)
摘要:Readdy.ai是一款AI驱动的产品设计工具,让产品经理通过自然语言直接生成高保真原型。其核心能力包括自然语言生成界面、风格迁移、可视化编辑、多页面一致性设计及代码输出(支持React/HTML/CSS)。相比传统流程,Readdy将原型开发周期从周级压缩至分钟级,并支持Figma双向互通、数据库直连等高级功能。通过数据标注平台案例展示其生成代码质量与交互效果。与竞品Lovable对比,Readdy更擅长完整页面开发与视觉转化,适合产品经理快速验证需求。工具本质是提升业务需求的“技术翻译”效率,而非
2025-07-24 12:54:15
1037
原创 保姆级教程:基于AutoDL + vLLM高效部署DeepSeek-R1大模型(THS)
摘要:本文详细介绍了如何在配备RTX 4090 24G显卡的AutoDL服务器上部署1.5B参数模型的全流程。内容涵盖环境准备、vLLM安装、HuggingFace模型直接加载与本地部署两种方案,并提供服务调用测试方法和常见问题解决方案。文章特别强调了无卡模式开机技巧、国内镜像源配置等实用技巧,并分享了Docker部署方案作为备选。实测数据显示,在RTX 4090上该模型生成阶段吞吐量可达36 tokens/s,文中还包含完整的参数配置说明和资源监控建议。
2025-07-24 12:48:03
415
原创 Docker Run 命令深度解析:容器生命周期的起点
docker run 是 Docker 的核心命令,用于从镜像创建和启动容器。它支持多种运行模式(前台/后台/交互式),并提供丰富的配置选项: 基础功能:支持容器命名、网络配置、存储挂载、环境变量设置 资源管理:可限制 CPU、内存等资源 安全控制:支持权限配置和只读文件系统 典型应用:包括 Web 部署(端口映射、自动重启)和开发调试(交互模式、目录挂载) 通过组合不同参数,docker run 可满足从开发测试到生产部署的各种容器化需求。
2025-07-23 12:51:27
940
原创 Docker Builder 深度解析:构建镜像的核心引擎
Docker Builder深度解析:本文全面剖析Docker镜像构建核心组件,涵盖传统构建器与BuildKit双引擎架构。从基础构建流程到多阶段构建、安全密钥管理等高级特性,详解包括: 架构解析:前端解析器→依赖图→分层构建的完整流程 核心命令:支持缓存控制、多阶段构建等关键参数 BuildKit优势:并行构建、细粒度缓存等5大进阶能力 优化策略:通过分层缓存、Alpine镜像等方法实现90%体积缩减 安全管理:--secret/--ssh等企业级安全特性应用 附构建流程图解与新旧引擎对比表格,提供从基础
2025-07-23 12:43:26
638
原创 Docker 数据卷(Volumes)命令详解
Docker数据卷命令详解:Docker数据卷(Volumes)是持久化存储数据的核心机制,支持命名卷、匿名卷、绑定挂载和tmpfs四种类型。本文系统介绍了数据卷的创建、查看、删除等基础操作命令,以及容器挂载、备份恢复等高级用法。关键操作包括:docker volume create创建卷、docker run -v挂载卷、--mount精确控制挂载选项。文章还提供了运维最佳实践,如数据迁移策略、安全配置和监控维护技巧,并附有常见问题解决方案和命令速查表,是Docker数据管理的实用指南。
2025-07-23 12:36:10
1433
原创 Docker Image prune详解
摘要: docker image prune 是 Docker 提供的镜像清理命令,用于删除悬空镜像(无标签的中间层或旧镜像)和未使用的镜像(需加 -a 参数),有效释放磁盘空间。支持参数包括 -a(深度清理)、--filter(按时间过滤)、-f(强制删除)等。 关键场景: 安全清理:docker image prune(仅悬空镜像) 彻底清理:docker image prune -a(含未使用的有标签镜像) 自动化:结合 --filter 或 crontab 定时任务 注意: 生产环境建议先检查(do
2025-07-23 12:26:19
382
原创 HTTP轮询(包括短轮询与长轮询)迁移到SSE(Server-Sent Events)流式推送比对
SSE(Server-Sent Events)相比HTTP轮询(短轮询/长轮询)在实时通信中具有显著优势:毫秒级延迟、资源消耗降低40%+、自动重连机制。技术实现需改造后端为SSE服务端点,前端适配EventSource,并配置代理支持长连接。SSE适用于股票行情等单向数据流场景,而WebSocket更适合双向交互。关键区别在于SSE为服务器推送、低延迟且开发简单,但仅支持文本数据且IE不兼容。迁移SSE可大幅提升实时性并降低服务器负载。
2025-07-22 12:32:52
850
原创 AI Native 设计理念
I Native设计理念通过深度集成AI技术,实现了系统的智能化、自适应性和持续优化,为各行业数字化转型提供了核心支撑。其成功关键在于遵循AI优先、数据驱动、敏捷开发等原则,并结合云原生架构与多模态技术,以应对未来挑战并推动创新。企业需根据自身需求选择AI Native或AI First策略,逐步构建以AI为核心的智能系统。
2025-07-21 22:22:40
626
原创 阿里云开源的云原生AI网关Higress AI
阿里云开源的Higress AI网关是一款云原生API网关,专为AI场景优化设计。基于Envoy内核构建,支持主流AI模型协议,提供智能流量治理、安全管控和成本优化能力。核心功能包括Token级限流、多模型动态路由、语义缓存等,显著降低带宽和Token消耗。典型应用场景包括统一AI模型网关、企业AI中台和Kubernetes入口,已成功应用于零一万物等企业案例。Higress通过Wasm插件生态支持扩展开发,未来将深化AI编程和边缘协同能力,实现高性能、低成本的AI服务治理。
2025-07-21 22:09:34
1063
原创 开源深度学习优化框架DeepSpeed使用指南
DeepSpeed 是由微软开发的开源深度学习优化框架,专为超大规模模型训练与推理设计,通过显存优化、并行策略和通信加速等核心技术,显著提升训练效率并降低资源消耗。以下从核心架构、实践指南到最佳实践进行全面解析
2025-07-19 13:19:28
1382
原创 网络智能体(Web Agent)通义WebSailor
摘要: 阿里巴巴通义实验室开源WebSailor网络智能体,突破复杂信息检索任务的技术瓶颈。其核心创新包括: 三级任务体系(基础检索→多跳推理→跨域关联)和数据模糊化技术,提升模型应对不确定性的能力; DUPO强化学习算法动态优化训练,推理效率提升3倍; 开源标杆性能:BrowseComp-en准确率12%(开源首次破10%),中文任务接近闭源领先水平。 应用覆盖模糊查询、企业获客、科研辅助等场景,7B模型可部署消费级GPU。开源1月获GitHub 5000+⭐,推动智能体研发转向数据驱动范式。 开源地址:
2025-07-19 12:53:59
1279
原创 DeepSpeed + Megatron-LM 组合方案的深度解析
本文深度解析了DeepSpeed与Megatron-LM的组合方案,重点探讨了其在千亿级模型训练中的核心价值、技术实现和性能优势。该组合通过DeepSpeed的显存优化和Megatron-LM的计算效率提升,实现了1+1>2的效果,支持高达10万亿参数的模型训练。文章详细介绍了架构流程、关键配置代码、通信优化技术,并提供了实测性能对比(如175B模型训练显存降低至38GB)。同时给出了部署指南和国产化适配方案(如昇腾910B优化实践),最后总结了适用场景与调优建议,为大规模模型训练提供了高效解决方案。
2025-07-19 12:50:30
632
原创 开源深度学习优化框架DeepSpeed详解
DeepSpeed是微软推出的开源深度学习优化框架,通过ZeRO显存优化和3D并行策略(数据/流水线/张量并行)实现超大规模模型高效训练,支持万亿参数模型训练和单卡13B模型部署。其核心技术包括ZeRO分阶段优化(显存降低至1/8)、Offload卸载至CPU/NVMe、混合精度训练等,在GPT-3等大模型训练中可降低40%成本。相比Megatron-LM和FSDP,DeepSpeed在显存优化和规模扩展上更优,但配置较复杂。适用于金融风控、生物医药等行业的大模型训练与推理场景。
2025-07-18 12:48:25
926
原创 MoE 稀疏推理详解
摘要(148字): MoE稀疏推理通过动态激活Top-K专家模块(如Mixtral 8x7B仅激活2/8专家),将70B级模型计算量降至稠密模型1/6,显存占用减少50%-70%。关键优势包括:吞吐提升3倍(如100+ tokens/s)、能效降低60%、支持千亿参数模型部署。主流方案结合vLLM/SGLang框架与FP8量化,在H100上实现>500 tokens/s,边缘设备(如Jetson Orin)可运行20B模型。优化技术涵盖负载均衡、专家并行通信及动态批处理,使MoE模型在1/4计算量下达
2025-07-18 12:44:34
619
流程规范\研发规范\代码规范\前端\HTML编码规范
2025-04-03
流程规范\研发规范\代码规范\前端\Flutter编码规范
2025-04-03
流程规范\研发规范\代码规范\前端\ESLINT规范
2025-04-03
流程规范\研发规范\代码规范\后端\6.安全规约
2025-04-03
流程规范\研发规范\代码规范\后端\附:专有名词解释
2025-04-03
流程规范\研发规范\代码规范\后端\5.设计规约
2025-04-03
流程规范\研发规范\代码规范\后端\4.工程结构
2025-04-03
流程规范\研发规范\代码规范\后端\1.编程规约
2025-04-03
流程规范\研发规范\代码规范\后端\3.单元测试
2025-04-03
流程规范\研发规范\代码规范\后端\2.异常日志
2025-04-03
Linux系统核心命令与基础架构配置指南
2025-03-25
SQLServer2008教程
2015-07-30
H3C CAS 云计算管理平台 开局指导-E0785及之后版本-5W100-整本手册
2025-04-22
【Linux系统管理】常用命令汇总:磁盘挂载、Docker操作、防火墙配置与服务管理
2025-04-22
H3C CAS云计算管理平台 安装指导-E0785系列-5W113-整本手册
2025-04-22
2025面试经验-阿里云-交付架构师
2025-04-16
2025面试经验-科大讯飞-系统架构师
2025-04-09
2025面试经验-阿里云智能-技术服务专家
2025-04-09
2025面试经验-海康萤石-Java应用架构师
2025-04-09
2025面试经验-京东零售-Java开发
2025-04-09
【信息技术领域】系统试运行保障及应急预案:构建全面的信息系统应急响应机制与试运行保障体系为系统试运行
2025-04-03
流程规范\研发规范\代码规范\前端\React编码规范
2025-04-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人