数据集分享 | 智慧农业实战数据集精选

【导读】

在智慧农业的发展浪潮下,AI视觉算法正逐步渗透进作物生长监控、病虫害检测、采摘成熟评估等细分任务。相较于工业或城市场景,农业视觉更具挑战性:自然环境复杂、目标形态多变、时空尺度差异大。

为实现精准农业管理,一批真实采集、场景丰富的农业数据集正成为模型训练与落地验证的关键基础。本文精选了多个本土农业数据集,从病虫害检测到成熟度识别,全面呈现“AI+农业”在图像层面的应用潜力!

目录

农业病虫害监测数据集精选

土豆病虫害检测数据集

辣椒病虫害检测数据集

水稻虫害识别数据集

香蕉成熟识别数据集

黄桃病虫害检测数据集

结语


农业病虫害监测数据集精选

  • 土豆病虫害检测数据集

土豆.png

定位:专为土豆作物健康监控打造的病虫害识别数据集。

数据量:295张图片,3种标签。

覆盖内容:

  • 土豆不同生长阶段的常见病害(如晚疫病、黑斑病)

  • 害虫种类标注(急虫、甲虫等)

  • 图像中病斑分布与虫体可见性较强,适合小样本学习

应用场景:

  • 智慧农业管理平台

  • 作物病害预警系统

  • 农户/企业病虫害图像诊断工具

  • 辣椒病虫害检测数据集

辣椒.png

数据量:1027张图像,5类标签。

标注粒度:覆盖叶片、茎秆、果实三个部位。

优势特征:

  • 覆盖辣椒不同发育阶段的多种病害表现

  • 标签具体明确,适合多类别检测任务(如炭疽病、疫病等)

  • 病害与健康部位共存,适合目标检测模型定位识别

典型应用:

  • 农药精准喷洒控制系统

  • 农业高校图像诊断教学

  • 辣椒产业病害图像识别App

  • 水稻虫害识别数据集

screenshot_2025-07-22_16-47-29.png

数据量:1997张图像,4种标签。

覆盖内容:

  • 覆盖水稻不同成长时期

  • 图像中存在大量真实田间虫体(如稻飞虱、螟虫)

  • 同一张图像中可能出现多个虫害目标

典型应用:

  • 智慧田管平台虫害预警模块

  • 作物生长决策系统(虫情识别+动态提示)

  • 果蔬成熟度与病害识别数据集

  • 香蕉成熟识别数据集

screenshot_2025-07-22_17-01-10.png

数据量:13478张图片,4类标签(生熟度阶段划分)

检测任务:

  • 成熟香蕉识别(判断是否可采摘)

  • 过熟/变质香蕉识别(用于剔除与售卖分级)

  • 背景复杂度高,适合实际采摘场景模拟训练

技术应用点:

  • 图像分类与目标检测联合建模

  • 适配智能分拣/仓储机器人系统

  • 黄桃病虫害检测数据集

黄桃.png

数据量:2104张图像,12种细分类标签

涵盖内容:

  • 多器官检测:叶片、果实、茎秆

  • 病虫害种类全:包括疮痂病、流胶病、虫蛀、斑点病等

  • 多尺度目标(微小叶斑 vs 大面积腐烂)

典型应用:

  • 果园病虫害智能诊断系统

  • 无人机/机器人图像识别采摘辅助系统

数据集获取方式:点击链接访问:www.coovally.com,登录后可直接一键调用哦~


Coovally平台训练实测

上述农业数据集已全部集成至 Coovally AI平台,平台上还包含400+开源数据集,涵盖图像分类、目标检测、语义分割等热门人物场景,一键调用即可投入训练,彻底告别“找模型、配环境、改代码”的繁琐流程!。

IMG_2734.GIF

在平台上,你可以一键调用YOLO、Transformer等热门模型,快速对农业图像进行训练与验证。平台支持零代码配置:

    • 免环境配置:直接调用预置框架(PyTorch、TensorFlow等);

    • 免复杂参数调整:内置自动化训练流程,小白也能轻松上手;

    • 高性能算力支持:分布式训练加速,快速产出可用模型;

    • 无缝部署:训练完成的模型可直接导出,或通过API接入业务系统。

    !!点击下方链接,立即体验Coovally!!

    平台链接:https://www.coovally.com


    结语

    农业场景下的视觉识别任务,正在从实验室走向田间地头。土豆、辣椒、水稻、黄桃、香蕉等多作物的视觉数据集为AI模型提供了精准“实战靶场”。

    ### 关于智慧农业 API 的开发者文档和使用教程 智慧农业作为现代农业的重要发展方向之一,其核心在于通过信息技术实现农业生产过程中的智能化管理和优化。针对智慧农业领域内的 API 开发者文档以及使用教程,以下是相关内容的详细介绍: #### 1. **智慧农业 API 的主要功能** 智慧农业 API 主要用于支持环境监测、设备控制、数据分析等功能模块。这些 API 可以为用户提供实时数据采集接口、远程设备操控能力以及基于大数据分析的服务支持[^1]。 #### 2. **常见的智慧农业 API 平台** 目前市场上已有一些成熟的平台提供与智慧农业相关的 API 接口服务,其中包括但不限于以下几种: - **The Things Network (TTN)** TTN 是一个全球性的 LoRaWAN 网络服务平台,适用于低功耗广域网通信场景下的传感器数据传输。它提供了丰富的 RESTful API 和 MQTT 协议支持,方便开发者集成到自己的智慧农业解决方案中[^2]。 - **FarmBot API** FarmBot 提供了一套开源硬件和软件组合方案,旨在帮助农民自动化种植流程。它的官方 API 文档详细描述了如何操作机器人执行播种、浇水等任务。 ```json { "command": "water", "location": { "x": 0, "y": 0, "z": 0 }, "volume_ml": 50 } ``` 上述 JSON 数据片段展示了调用 FarmBot API 进行灌溉的一个简单示例。 - **OpenAg Initiative by MIT Media Lab** 来自麻省理工学院媒体实验室的 Open Agriculture Initiative 致力于开放农业科技的研究与发展工作。他们发布的 API 能够让研究人员访问实验农场的数据集并参与协作创新活动。 #### 3. **学习资源推荐** 对于希望深入了解智慧农业 API 设计与使用的人员来说,可以参考以下几个方面获取更多资料: - 官方技术博客或论坛:许多知名公司都会定期更新有关最新进展的文章; - 在线教育网站上的专项课程:Coursera、Udemy 上均有涉及 IoT 技术应用于农业生产的培训项目; - 社区交流群组:加入 GitHub Discussions 或 Reddit r/smartfarming 子版块与其他爱好者互动分享经验心得。 #### 4. **实际案例解析——鸿蒙物联网应用之智慧农业项目实战** 此毕业设计竞赛选题不仅包含了完整的系统架构说明还附带了详细的代码样例文件夹结构如下所示: ``` project/ │── docs/ # 文档目录存放需求规格说明书测试计划报告等内容 │── src/main/java/com/example/agriculture/api/ApiService.java # Java 实现的核心业务逻辑层定义各类对外暴露方法签名 └── README.md # 描述整个项目的背景意义安装部署指南贡献方式版权归属声明等基本信息 ``` 其中 `ApiService` 类封装了一系列面向客户端请求处理函数比如查询土壤湿度温度光照强度数值或者设置喷淋定时器参数范围等等具体实现细节可参照随书配套光盘查阅源程序清单列表逐一对照理解掌握要点所在之处。 ---
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值