自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(230)
  • 收藏
  • 关注

原创 雾天、夜晚都能识别?MEIWVD数据集+MSG-Net攻克内河航道检测三大难关

通过对现有文献的分析,尽管这些数据集推动了船舶检测研究的进展,但其在规模、多样性和现实世界适用性方面的局限性,凸显了需要更全面的数据集来应对表面物体检测的复杂性。此外,为验证所提方法MSG-Net的有效性,我们通过提升多场景适应性、几何特征提取及水面物体多尺度特征描述等方面的改进,开展性能提升的比较分析,旨在识别在真实世界环境中进行内河船舶检测的潜在优化策略。在水面物体检测任务中,常见的船只物体具有明显的几何结构,通常表现为规则的矩形形状,宽度和高度相对固定,且宽度显著大于高度,如图6b所示。

2025-08-08 18:14:01 532

原创 无人机“飞得高”不等于“看得清”?无人机图像识别的算法真相来了!

随着无人机在交通管理、城市治理、铁路巡检、精准农业等领域的加速普及,航拍图像正成为一种宝贵的新型数据资产。YOLO、Faster R-CNN、SSD、DETR、Swin Transformer……点几下鼠标,模型就绪。随着无人机技术和AI算法的不断发展,Coovally将持续更新最前沿的模型和工具,成为你探索天空智能最可靠的伙伴!——从识别违章车辆、发现城市乱象,到定位病虫害或铁路隐患,好的算法能将高空视角真正转化为可落地的洞察。农田、城市、铁轨、车流,每个行业对算法的需求都截然不同:你要速度?

2025-08-07 09:23:52 537

原创 论文精读|YOLO系列最新模型水下实测:v8为何能斩获80.9% mAP?

例如,基于AI的图像识别系统,如卷积神经网络(CNNs),可显著提升对各种垃圾形式的识别能力,从而实现更精准高效的清理作业。Faster R-CNN 是物体识别领域的一项重大突破,通过引入区域提案网络(RPN)扩展了先前 R-CNN 模型的功能,从而提升了检测速度和准确性。它引入了经过修订的架构,包括放大的卷积和优化的锚点设置,从而在保持良好检测准确性的同时,实现了更短的推理时间。因此,图3展示了工作流程的总体概述,简要说明每个步骤,以便更好地理解本研究的结构,包括所采用的方法。

2025-08-06 10:31:32 984

原创 FPN“看不见小目标”?试试这套升级版结构,训练验证一步到位!

HS-FPN并没有抛弃FPN的多尺度设计,而是在此基础上,从频率域和空间关系两个关键点上对其进行增强,是一项具有可嵌入性强、提升效果显著的设计。在 HS-FPN 中,两个模块起到了至关重要的作用,分别对应两个关键设计目标:增强小目标的特征表达力,提升小目标的空间感知能力。今天这篇文章,带你认识一个全新结构——HS-FPN,它专为小目标而生,通过频率域感知与空间依赖学习,大幅提升微小目标的检测能力。虽然 HS-FPN 带来了一定的计算提升,但仍在可接受范围,且相比精度提升,性价比非常高。

2025-08-05 17:53:13 795

原创 铁路16万公里怎么巡?无人机+AI 交出了这样的答卷

从“人巡”为主的传统模式,到“机巡”引领的智能升级,铁路运维正经历一场深刻变革。无人机巡检不仅实现了降本、提效、增安全,更推动铁路运维迈向无人化、标准化、数据化的未来。随着无人机场在铁路沿线逐步铺开,我们有理由相信,铁路的每一公里都将更安全、更智慧。让每一段铁路都“看得见、管得住、可预测”——这就是无人机AI赋能铁路运维的真正价值。

2025-08-05 10:05:16 668

原创 轻量?智能?协同?你选的标注工具,到底有没有帮你提效?

面对传统工具在效率、易用性、智能化上的种种短板,Coovally 平台打造了一套真正“实用主义”风格的数据标注工具,专为 AI 开发者、企业团队、科研人员打造。借助平台提供的模型辅助标注功能,你可以选择几组数据进行人工标注,标注完成后发布为数据集启动微调训练,剩余样本集数据即可全部自动化完成。标注完成后,可直接将数据用于平台内的模型训练、验证和部署流程,省去格式转换和平台迁移的麻烦。标注流程绑定平台生态,数据迁移困难。在模型飞速演进的时代,数据仍是 AI 的地基,而高质量标注,是打好这个“地基”的关键。

2025-08-04 17:48:48 586

原创 只有2MB,却能跑满277FPS?专为无人机小目标打造!

特别是在实际场景中,无人机采集到的图像往往存在遮挡、复杂背景、目标小等问题,这些都给算法提出了更高的要求。传统FPN和PAN结构在处理无人机图像时,容易出现高层语义信息在下采样传递中衰减,或低层细节在上采样中被稀释,尤其不利于小目标的检测。为此,LUD-YOLO引入了。未来,研究团队计划将LUD-YOLO扩展至小样本/弱监督场景,以降低对标注数据的依赖,加速模型在农业巡检、安防布控等领域的落地应用。因此,传统检测模型如YOLOv5、YOLOv7等,要么“体重超标”,要么精度不足,

2025-08-04 09:31:43 838

原创 数据集分享 | 稻田识别分割数据集、水稻虫害数据集

因此,一个强大的农业视觉系统,必须同时具备虫害检测与稻田场景识别的能力。这两个任务结合,才能构建一个真正具备感知、分析、决策能力的智慧农业系统。两个数据集均采集自真实田间环境,标注精细,格式通用,已全面集成至 Coovally AI 平台,支持一键训练与部署,助力农业AI项目快速落地。如果你正在开发农业视觉算法、农业无人机任务系统或农业数据平台,上述两个数据集将是你最值得参考和使用的资源。图像拍摄于农田不同发展阶段,包含顺光/逆光、不同种植模式、不同地块结构等,具备强鲁棒性。

2025-08-01 09:59:16 529

原创 无人机图像+深度学习:湖南农大团队实现稻瘟病分级检测84%准确率

引入的 DSCAM 注意力机制有效弥补了传统 GoogLeNet 模型在病斑颜色敏感度上的不足,通过对原始图像的颜色差异进行提取和颜色权重的重新分配,不仅增强了模型对病斑颜色的敏感性,还提升了其在复杂背景中捕捉病害特征的能力。DSCAM 是一种专注于病斑颜色特征的空间注意力机制,通过捕捉病斑区域的空间特征、分析和学习病斑颜色与周围健康组织颜色之间的差异,自适应调整 图像中不同位置的颜色响应,从而强化模型对病斑颜色信息的敏感度,提升病害识别的准确性。基于上述改进,最终的网络结构如图 3 所示。

2025-07-31 17:39:44 728

原创 数据集分享 | 电子元件检测数据集

尤其在PCBA检测、元器件回溯与缺陷分析等场景中,如何精准定位、识别电路板上的多类别元器件,是决定系统鲁棒性和生产效率的关键。本文将介绍一个专为电子板元件检测任务打造的高质量数据集,覆盖23类常见电子元件,搭配真实工况采集与精细化标注,为开发者提供坚实的训练与验证基座。在电子制造行业中,电路板的功能依赖于众多元件协同工作,因此元器件的识别与分类不仅是电路板缺陷检测的前提,更是质量控制、BOM核对与自动化检测流程中的核心任务。该数据集的多样性与高分辨率特点,为检测模型提供了足够的学习空间与泛化能力。

2025-07-31 10:43:16 328

原创 原来工业 AI 异常检测只做了一半?AnomalyNCD 补上了“最关键一环”

更进一步,很多缺陷在初期甚至没有明确的定义,因此模型需要具备“发现未知异常类型”的能力,即异常多分类与新类别发现(Novel Class Discovery, NCD)。为了解决这一痛点,华中科技大学等研究团队在CV领域最新论文中提出了AnomalyNCD,一个支持工业场景中异常分类与新类别发现的通用框架,兼容主流检测器,在MVTec AD和MTD两大数据集上全面领先。它不仅能识别异常,更能学习如何分类这些异常,甚至面对从未见过的缺陷类型,也能“自学成才”完成归类,真正赋予系统“类比与认知”能力。

2025-07-30 17:49:35 1417

原创 数据集分享 | PCB缺陷检测与玻璃缺陷实例分割数据集分享

PCB的缺陷类型多样(如短路、断路、铜渣、漏孔等),且缺陷尺寸微小、形态复杂,传统的人工检测方法效率低且易漏检。传统的人工目检或光学检测方法难以满足高精度、高效率的需求,而基于深度学习的实例分割技术能够精准定位并分类缺陷,为智能质检提供可靠解决方案。为实现高精度的PCB板缺陷检测,通常需要收集包含不同缺陷类型、不同工艺批次以及复杂背景(如短路、毛刺、有铜渣等)的高清图像,并进行精细标注。为实现高精度的玻璃缺陷检测与分割,需收集包含多种缺陷类型、不同光照条件及复杂背景的图像数据,并进行标注。

2025-07-30 10:11:06 839

原创 工业质检新突破!YOLO-pdd多尺度PCB缺陷检测算法实现99%高精度

【导读】如何在保证实时性的同时大幅提升PCB缺陷检测的准确率?来自北京大学的YOLO-pdd框架将YOLOv5与多尺度特征提取模块Res2Net融合,在保留检测速度优势的同时显著增强细粒度识别能力,在PKU-Market-PCB等数据集上实现超99%的精度表现,刷新工业质检智能化水平。尽管自动光学检测(AOI)技术取得进展,且基于深度学习的PCB缺陷检测器已出现,但该领域仍存在若干研究空白与挑战。本文旨在通过提出基于深度卷积神经网络(CNN)的PCB缺陷检测方法,满足PCB制造行业对高精度、鲁棒性、实时性能

2025-07-29 18:05:02 868

原创 YotoR模型:Transformer与YOLO新结合,打造“又快又准”的目标检测模型

在过去的研究中,Transformer虽然在图像分类、分割等任务中展现了强大的全局建模能力,但由于计算复杂度高、速度慢,它一直难以进入实时目标检测的主流应用。而另一方面,以YOLO为代表的CNN结构,虽在速度上有明显优势,但在复杂场景下的检测精度仍有提升空间。此外,YotoR 还支持不同规模模型的组合,如 TP4、TP5、BB4,满足从轻量级到高性能的多场景需求。架构深度融合,提出了一套新的混合检测模型家族,在多个评测任务中都实现了对原模型的性能超越,值得重点关注。YotoR在连接这两个模块时,

2025-07-29 09:33:44 755

原创 避开算力坑!无人机桥梁检测场景下YOLO模型选型指南

值得注意的是,美国机械工程师协会(American Mechanical Engineers)于2018年进行的一项研究提出了一种基于深度学习的方法,用于桥梁的全面维护和检测。然而,部分研究结果存在矛盾。本文提出了一种面向无人机(UAV)桥梁检测场景的深度学习模型选型框架,核心在于对YOLO系列最新变体(v5, v6, v7, v8)共23个模型在专用桥梁细节数据集(COCO-Bridge-2021+)上进行了系统性的基准测试,实现了在严格受限的边缘算力(如无人机)与高精度检测需求之间的最佳平衡点识别。

2025-07-25 16:53:12 763

原创 别卷单模态了!YOLO+多模态 才是未来场景实战的“天选方案”

文章围绕轻量化多模态融合、动态模态选择机制、开放词汇检测等核心方向,分析了如MM-YOLO、LMS-YOLO、YOLO-World等代表性工作所引入的门控机制、模态对齐策略与跨模态语义引导方法,展现了YOLO从单模态检测器向多模态感知平台的演进路径。于是,多模态融合检测技术快速崛起,YOLO也不再局限于“看图识物”,而是学会了“多感官协同感知”。未来,多模态YOLO也许不再是“一个模型+多个模态”,而是一个更智慧的感知大脑,根据环境灵活组合、主动选择信息源,实现真正意义上的“全场景智能感知”。

2025-07-25 09:10:55 993

原创 单图53ms推理!浙大提出玉米骨架提取新方法,株高/叶长/叶龄一键精准测量

【导读】大田玉米生长环境复杂(光照多变、背景杂乱、叶片严重遮挡),精准获取植株骨架和关键生长参数(株高、叶龄、叶长)难度极大。本研究创新提出改进的YOLOv11-Pose模型,融合均匀采样骨架表示与双重注意力机制(自注意力+卷积注意力),显著提升对遮挡和粘连的识别能力。本方法高效、精准、低成本,成功突破复杂田间环境限制,为玉米生长监测与精准农业管理提供了强有力的技术利器!>>更多资讯可加入CV技术群获取了解哦目录一、材料与方法玉米图像数据集 图像扩增与关键点均匀采样

2025-07-23 17:35:12 424

原创 数据集分享 | 智慧农业实战数据集精选

为实现精准农业管理,一批真实采集、场景丰富的农业数据集正成为模型训练与落地验证的关键基础。在智慧农业的发展浪潮下,AI视觉算法正逐步渗透进作物生长监控、病虫害检测、采摘成熟评估等细分任务。土豆、辣椒、水稻、黄桃、香蕉等多作物的视觉数据集为AI模型提供了精准“实战靶场”。Coovally平台正帮助科研人员、农业企业与初创团队跨越技术门槛,以零代码的方式,将AI能力快速应用于农业管理与作物保护中。在平台上,你可以一键调用YOLO、Transformer等热门模型,快速对农业图像进行训练与验证。

2025-07-23 09:48:01 392

原创 主流检测模型太重? EdgeYOLO 让边缘部署又快又准还轻量

无论是在无人机航拍中的实时监控,还是在工业园区的安防巡逻,越来越多的目标检测任务不再依赖云端计算,而是直接在设备本地完成。访问官网,开启你的零代码AI开发之旅!同时,YOLO 系列中的检测头通常是“耦合式”的,也就是说,分类、定位、置信度共享一套卷积核。以 YOLOv5 为例,虽然速度不错,但即使在 Jetson Xavier 上运行,FPS 仍然不理想,且小目标识别能力欠佳。然而,边缘设备的算力有限,如何在“低功耗、低延迟”的前提下实现高精度目标检测,成为了模型设计中的一大挑战。

2025-07-22 17:48:37 879

原创 无人机拍的小目标看不清?详解SF-YOLO两大黑科技,VisDrone实测mAP提升12.6%

【导读】在视频监控和无人机任务中,小目标检测一直是个难题,常规目标检测模型往往在这方面表现不佳。为了解决这一问题,本文提出了 SF-YOLO ——一个专为小目标设计的新型YOLO框架。SF-YOLO通过引入空间信息感知模块,增强对目标与背景差异的理解,同时结合多尺度特征融合策略,提升小目标的识别效果。实验证明,在多个公开数据集上,SF-YOLO在保持低计算成本的同时,达到了与先进模型相当的检测性能。这篇文章将带你深入了解SF-YOLO的关键设计与性能表现。>>更多资讯可加入CV技术群获取了解哦目录一、相关工

2025-07-22 09:55:09 874

原创 YOLO新版本已经到13,为何落地首选仍是 v5/v8?

RaaS 是一种按任务计价、结果交付的AI服务模式,你只需提交需求,无需管模型、平台、训练、测试这些繁琐细节,我们帮你完成所有开发,按阶段交付结果,且效果有保障!如果 YOLOv5 已经能将检测精度做到 95%,那 YOLOv13 哪怕能再提 1%,但部署难度、算力成本、维护复杂度都更高,工程上往往是不划算的。然而令人意外的是——无论在最新的科研论文里,还是各种真实落地的工业项目中,YOLOv5 和 YOLOv8 依旧是被频繁使用的主力模型。今天我们就来聊聊这个表面“落后”背后的合理逻辑。

2025-07-21 09:40:39 636

原创 【CV工程落地】如何用YOLO三模融合实现道路地下缺陷98.6%召回率?

【导读】在城市化快速发展的今天,道路“看起来没问题”,但地下却可能暗藏危机。路面下层病害(RSD)已成为影响道路安全的“隐形杀手”,而传统依赖人工判读的检测手段,不仅耗时长、效率低,还对专业经验高度依赖。本文介绍了一项突破性研究——结合3D地面穿透雷达(GPR)与YOLOX深度学习模型,首次构建大规模高质量实地数据集,并创新性提出三模态交叉验证策略。该方案在真实道路测试中实现98.6%召回率、90%工作量节省,为道路健康监测提供了高效、可靠的智能解决方案。想了解这套系统是如何将深度学习“落地”到城市道路巡检

2025-07-21 09:37:10 1122

原创 YOLO11 vs LMWP-YOLO:参数量-52.5%,mAP+22.07%,小型无人机的远距离检测

【导读】在环境监测、安防巡查和城市管理等场景中,小型无人机已成为提升效率的重要工具。然而,不明无人机的非法闯入问题也日益严峻,尤其是在复杂环境中,这类小目标因尺寸微小、背景融合、光照变化等因素,极易造成检测“盲区”。传统目标检测模型面对这类挑战,往往在效率、精度和部署成本之间难以平衡。针对这些难题,本文介绍了一种全新轻量化模型——LMWP-YOLO,在保持高精度检测的同时,显著降低模型体积和计算消耗。本文将从背景问题、现有模型瓶颈、核心创新点及实验对比等方面进行全面解析。>>更多资讯可加入CV技术群获取了解

2025-07-17 16:45:36 1202

原创 卷积网络到底能不能“定位”?一次对空间表示能力的深度解析

全卷积模型(Fully Convolutional Models)在该任务中表现良好,主要得益于其对局部特征的学习能力,但它们的感受野有限(即便有16层,也仅覆盖图像的约22%),因此在处理需要全局上下文的信息时存在明显局限。在相同精度下,每层卷积数为2的卷积网络所需的通道数更少,从而使得每通道的信息量更高,这与压缩假设(compression hypothesis)相一致。本文通过一系列严谨实验和系统分析,从最朴素的卷积结构到复杂的空间感知模块,再到热图预测机制,全面探讨了卷积模型对空间坐标的表达能力。

2025-07-17 09:41:32 727

原创 RICE-YOLO:基于改进YOLOv5的无人机稻穗检测新方法

本文介绍了一种专为无人机图像优化设计的稻穗检测模型——RICE-YOLO,该模型基于YOLOv5框架,在结构上做出三大改进,有效提升了小目标检测能力、边缘目标定位精度和模型整体性能。中国是世界上最大的大米生产国与消费国,稻谷产量稳居全球首位。模型重构Neck部分,增加一个用于小目标检测的微尺度分支(P2),并删除用于检测大目标的深层检测头(P5),更符合稻穗在图像中的实际尺寸分布。改进损失函数,引入SIoU(Scylla IoU),将稻穗在图像边缘的倾斜、偏移纳入回归惩罚项,有效提升对扭曲目标的定位精度。

2025-07-16 17:35:43 1112

原创 超越YOLOv8!无参注意力+动态ROI的YOLO-APD突破复杂道路场景

【导读】针对复杂道路(如Type-S曲面)下传统RGB行人检测的局限,本文提出YOLO-APD——一种优化的YOLOv8架构。它集成SimAM注意力、C3Ghost、SimSPPF、Mish激活和IGD模块等关键创新,并引入基于转向动力学的自适应ROI处理。在定制CARLA数据集上,YOLO-APD取得77.7% [email protected]:0.95和>96%召回率,显著优于基线(含YOLOv8),且保持100 FPS实时性能。消融实验验证了组件有效性,KITTI评估展示了潜力与适应性需求,为复杂环境下的高精度、高效感

2025-07-15 16:43:21 831

原创 2025年小目标检测分享:从无人机视角到微观缺陷的创新模型

MSCA与AFPN形成协同机制——MSCA的响应值输入AFPN,而AFPN的多尺度集成进一步放大了MSCA优势,构建出层次分明的特征“情报网”。与传统注意力机制不同,MSCA加入深度卷积层聚合局部信息,使模型能同时捕捉微小目标的细节特征及其与周围环境的关联。当机器视觉突破尺度极限,我们看到的不仅是一个更清晰的数字世界,更是智能系统与现实环境深度交互的未来图景。针对小目标的专用检测头设计独具匠心。这一设计既保证了对大型夹渣的检测能力,又不牺牲微小气孔的敏感度,使模型检测范围扩展至传统方法的3倍尺度跨度。

2025-07-15 10:09:09 1471

原创 无人机图像中的小目标检测新利器:深入解析 LAM-YOLO 模型

LAM-YOLO 构建在 YOLOv8 基础上,但进行三大方向的结构升级,包括注意力增强模块、特征融合方式、损失函数设计,并额外引入两个小目标检测头,全面提升小目标检测精度。LAM-YOLO 的提出正是为了解决这些关键难题——它不仅提升了检测准确率,还保持了优秀的实时性能,是 YOLOv8 在无人机检测场景下的重磅升级。揭示人类观觉中光照和注意力之间的关系,将人类的非观觉效应精神绘装到模型设计中,是该模型最大的特色。公式设计上,每个像素根据其位置和通道生成局部卷积核,通过自适应调整不同区域的处理策略。

2025-07-14 17:21:09 1011

原创 从大象到老鼠,FPN如何一次搞定?多尺度检测核心解析

无论你是在构建自动驾驶系统(同时识别交通标志和行人)、开发医学影像分析(同时检测微小肿瘤与器官结构)、还是从事任何对尺度敏感的应用,FPN 都是一个值得选择的强大方案。RaaS 是一种按任务计价、结果交付的AI服务模式,你只需提交需求,无需管模型、平台、训练、测试这些繁琐细节,我们帮你完成所有开发,按阶段交付结果,且效果有保障!这正是 FPN 诞生的初衷:它通过一种更结构化、更高效的方式,提取并增强不同层级的特征,使其更适用于对尺度敏感的任务,例如目标检测与图像分割。

2025-07-14 09:45:04 957

原创 单目深度估计重大突破:无需标签,精度超越 SOTA!西湖大学团队提出多教师蒸馏新方案

近日,西湖大学AGI实验室联合浙江工业大学等单位,提出了一种全新的多教师蒸馏算法,仅靠2万张无标签图片,就显著提升了单目深度估计的精度,刷新了现有SOTA!未来,随着该方法的进一步优化,单目深度估计有望在更多智能系统中发挥基础性作用,尤其是在资源受限、数据稀缺但对三维理解要求高的任务中,展现更强大的生命力。多模型协同带来的互补信息,使得学生模型能够学习到更全面的深度表达,增强了泛化能力和鲁棒性,尤其在面对不规则、复杂、低质量图像时依然表现出色。学生模型在多个任务中甚至超过教师模型,展现出强大的学习能力。

2025-07-11 09:49:42 888

原创 从FCOS3D到PGD:看深度估计如何快速搭建你的3D检测项目

在后续更新中他们又推出了全新升级版——PGD(Probabilistic and Geometric Depth)最有意思的是,这次他们彻底换了路线:从原先的“直接回归深度”,转向了一个更加聪明、更加鲁棒的方向——结合几何关系和深度不确定性来建模目标的3D位置。PGD 并不是从零设计一个新的检测框架,而是继承了 FCOS3D 的整体结构与优势设计,并针对其中最关键的“深度估计”模块进行专项改进。PGD 则引入了一种透视几何驱动的图结构,每个检测到的实例是图中的一个节点,边的方向代表深度传播路径。

2025-07-11 09:32:46 911

原创 基于YOLOv11的CF-YOLO,如何突破无人机小目标检测?

为了验证CF-YOLO在小目标检测任务中的有效性,作者在多个典型的无人机遥感图像数据集上进行了深入实验,并通过消融实验与横向对比评估其各模块的贡献和整体性能。对于很多刚入门AI开发的研究者或时间紧迫的科研项目团队来说,尽管CF-YOLO在学术与工程实践中展现出强大的性能,但要从零搭建模型、准备数据、优化训练参数,依然是一项不小的工作量。为评估各模块对整体性能的影响,论文设计了逐步引入模块的消融实验,包括CS-FPN、FRM、Sandwich融合、RFAConv和LSDECD检测头。CF-YOLO中提出的。

2025-07-09 17:14:42 1169

原创 热搜第一!常州队进球无效?用YOLO建个足球追踪系统试试看!

目标追踪是指在视频序列中,保持同一物体ID一致,并绘制其移动轨迹。我们需要结合:位置:距离与上帧目标位置的接近程度;外观:颜色特征、尺寸、长宽比等;运动轨迹:使用卡尔曼滤波器预测移动趋势。首先,我们应该从视频文件中提取帧。# funcs.pyimport cv2break批量推理并缓存,跟踪检测目标绘制可视化框和导出。

2025-07-08 17:30:26 1067

原创 YOLO模型优化全攻略:从“准”到“快”,全靠这些招!

诸如比较不同 YOLO 版本、调整图像大小、使用半精度、优化超参数、利用 TensorRT、修改模型架构以及应用数据增强等技术,提升了 YOLO 的性能。YOLO每一代都有不同体积版本,比如YOLOv11系列包含n(nano)、s(small)、m(medium)、l(large)、x(extra large)等多个版本。但模型用得越多,我们就越意识到——“速度够快”远远不够,尤其是在GPU资源紧张、设备算力受限、任务实时性要求极高的现实场景下。合理的超参数组合可显著提升模型收敛速度、稳定性和泛化能力。

2025-07-07 17:27:28 1080

原创 图像+声音+文本,多模态AI为什么让各行业都在追?

—能“看”、能“听”、能“感知”,甚至能“推理”。多模态AI就是要打破这种局限,它可以融合来自不同传感器的数据,例如图像+文本、视频+语音、RGB+深度、图像+温度,甚至图像+临床记录……RaaS 是一种按任务计价、结果交付的AI服务模式,你只需提交需求,无需管模型、平台、训练、测试这些繁琐细节,我们帮你完成所有开发,按阶段交付结果,且效果有保障!讲解了CLIP、SAM、DINO等基础模型的多模态架构机制,让农业AI具备“零样本学习”、“自动标注”等能力。但现有模型普遍笨重,不适合部署。

2025-07-07 17:15:35 1020

原创 还在手动训练Faster R-CNN?你可能走了一条最难的路

今天,我们不仅带你快速了解如何用 PyTorch 从零训练 Faster R-CNN,还要告诉你一个更快、更省钱的解决方案——Coovally平台,以及它最新推出的“RaaS结果担保式模型交付服务”。无论是缺陷检测、烟雾识别、车道线提取,还是行为分析、农业植保、智能巡检,RaaS 都能快速交付模型服务。就是你不需要管模型、平台、训练、测试这些复杂流程,只需要提交需求,我们来帮你做,结果交付,有效果担保。,只有想不到没有做不到,全程无需任何复杂操作,只需提交需求便可开始你的AI模型开发,。

2025-07-04 09:18:16 718

原创 RTMPose:重新定义多人姿态估计的“实时”标准!

传统的高精度方法如HRNet、ViTPose虽然准确,但耗时大、难以部署。实时多人姿态估计一直是计算机视觉领域的“性能炼金术”:要在精度、速度、部署成本之间找到最优解,并不容易。RTMPose-S 代表了当前姿态估计模型的“部署最优解”:既兼顾精度,又对设备要求极低,非常适合工业、移动端、嵌入式设备等应用。传统姿态估计一般使用热图(heatmap)回归来预测关键点位置,这种方式虽然直观,但在推理时计算量大、部署困难。而 RTMPose 从底层架构到输出方式都进行了重构与优化,真正做到了“为落地而生”:。

2025-07-04 09:11:38 643

原创 当AR遇上深度学习:实时超声肾脏分割与测量技术全解析

在第二阶段,检测到的区域被裁剪并传递给MedSAM,这是一个基于提示的变压器架构,专为医学影像中的零样本分割设计。然而,自动测量方法的误差范围仅为几毫米,与观察者间变异性相当,且允许医师在数秒内快速调整,从而释放时间和精力用于超声图像评估。在这种情况下(例如BMI>35),超声图像质量因声学衰减和反射增加而下降,这给基于超声的成像带来了固有的物理限制,无论算法性能如何。基于原始框架的成功,nnU-Net v2引入了新的残差编码器、改进的归一化策略,以及通过指纹提取自动适应数据集特征的增强训练管道。

2025-07-02 17:54:42 1135

原创 YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!

就在大家还在研究多模态和大模型融合时,YOLOv13 的发布再次把目标检测领域推上热搜,但目标检测,这个曾经被视为CV领域“基础中的基础”,如今也在被频繁问到:“还值得做吗?无需繁琐配置,一键选择模型即刻训练,彻底告别“找模型、配环境、改代码”的繁琐流程。,只有想不到没有做不到,全程无需任何复杂操作,只需提交需求便可开始你的AI模型开发,只有跳出传统,拥抱多模态、大模型、低资源、实际场景应用,目标检测才会焕发新生。如果你想快捷高效的开发出模型,但又因为硬件,时间等头痛时,Coovally的。

2025-07-02 17:43:54 1270

原创 用 YOLOv8 + DeepSORT 实现目标检测、追踪与速度估算

【导读】目标检测与追踪技术是计算机视觉领域最热门的应用之一,广泛应用于自动驾驶、交通监控、安全防护等场景。今天我们将带你一步步实现一个完整的项目,使用YOLOv8 + DeepSORT实现目标检测、追踪与速度估算。>>

2025-07-01 17:24:33 1119

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除