文章目录
RAG 入门:什么是 RAG?有哪些相关技术?
RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了信息检索和文本生成的技术,旨在提升生成式模型(如DeepSeek、GPT、T5等)的准确性、实时性和可信度。其核心思想是:在生成答案前,先从外部知识库中检索相关信息,并将检索结果作为上下文输入生成模型,从而生成更精准、可靠的回答。
RAG 的核心工作流程
- 检索(Retrieval):当用户输入问题或文本时,系统会从外部知识库(如数据库、文档、网页等)中检索与输入相关的信息。然后使用向量数据库(如FAISS)或搜索引擎(如Elasticsearch),通过语义相似度匹配找到最相关的文档片段。
- 增强(Augmentation):将检索到的相关文本与用户输入合并,形成增强后的上下文。例如:用户问“量子计算如何改变密码学?”,系统会先检索“量子计算对密码学的影响”相关论文或文档,并将这些内容作为附加信息输入模型。
- 生成(Generation):生成模型(如DeepSeek、GPT、Llama等)基于增强后的上下文生成最终回答,确保结果既基于模型自身的知识,也结合了外部实时或领域特定的信息。
RAG 的优势
- 准确性:依赖外部知识库,减少模型“编造事实”(幻觉问题)。
- 实时性:通过更新知识库,生成内容可反映最新信息(传统模型受限于训练数据的时间点)。
- 可解释性:生成的答案可追溯到检索到的文档,增强可信度。
- 灵活性:适用于垂直领域(如医疗、法律),通过定制知识库提升专业性。
RAG vs. 传统生成模型
场景 | 传统生成式模型(GPT) | RAG |
---|---|---|
知识更新 | 依赖训练数据,无法动态更新 | 通过更新外部知识库获取最新信息 |
专业性 | 通用性强,但垂直领域知识有限 | 结合专业数据库,适合特定领域(如医疗) |
可解释性 | 生成结果难以溯源 | 可追踪到检索的文档片段 |
幻觉风险 | 较高(可能生成不准确的内容) | 较低(依赖真实文档) |
应用场景
- 智能客服:结合企业知识库,提高精准的产品支持;
- 医疗咨询:检索最新医学文献,生成诊断建议;
- 法律助手:引用法律条文和案例,生成法律意见;
- 教育问答:基于教材或学术资源,解答复杂问题。
挑战与限制
- 检索质量依赖:若知识库不完善或检索算法不佳,会影响生成结果;
- 计算成本:检索和生成需额外计算资源;
- 知识库维护:需持续更新和管理外部数据源。
典型工作流
用户输入 → 通过检索模块从知识库寻找相关文档 → 增强上下文 → 通过大语言模型生成结果 → 最终输出 \text{用户输入} \rightarrow \text{通过检索模块从知识库寻找相关文档} \rightarrow \text{增强上下文} \rightarrow \text{通过大语言模型生成结果} \rightarrow \text{最终输出} 用户输入→通过检索模块从知识库寻找相关文档→增强上下文→通过大语言模型生成结果→最终输出
RAG 相关技术
常用的技术包括 LangChain 框架和 FAISS 向量数据库,接下来我们展开介绍。
LangChain 框架
LangChain 简介
LangChain 是一个用于构建大语言模型(LLM)应用的开发框架,旨在通过模块化设计简化 LLM 与外部工具、数据和服务的集成。其核心目标是将 LLM 的能力与实际应用场景结合,例如问答系统、文档分析、智能体(Agent)等。
LangChain 核心组件
- Models(模型):支持多种 LLM 和 Embedding Models;
- Indexes(索引):提供文档加载、分割、向量化、检索等功能,用于构建知识库,关键模块包括
DocumentLoader
、TextSplitter
、VectorStore
; - Chains(链式流程):将多个模块串联为完整流程(如 RAG 的
检索
→
增强
→
生成
\text{检索} \rightarrow \text{增强} \rightarrow \text{生成}
检索→增强→生成。基于
RetrievalQA
链可以直接实现 RAG 的端到端流程。 - Agents(智能体):允许模型调用外部工具(计算器、API、数据库等)完成复杂任务。
- Memory(记忆):支持历史对话管理,实现多轮对话的上下文连贯性。
FAISS 向量数据库
FAISS 简介
FAISS(Facebook AI Similarity Search)是由 Meta 开源的高效向量相似性搜索库,专为高维向量快速检索设计,适用于大规模数据集。
FAISS 核心功能
- 高效搜索:基于近似最近邻(ANN)算法,在亿级向量中实现毫秒级检索;支持 GPU 加速,可显著提升性能。
- 向量索引构建:支持多种索引类型,平衡精度与速度;
- 轻量级与易用性:无需复杂部署,可以直接集成到本地应用。
FAISS 典型应用场景
- 文本相似度搜索(如 RAG 中的文档检索);
- 图像/音视频特征匹配;
- 推荐系统与聚类分析;
LangChain + FAISS 在 RAG 中的作用
在 RAG 流程中,LangChain 负责整体架构的搭建,而 FAISS 作为向量数据库支撑检索环节。
RAG 实现工作流
首先进行文档加载与预处理:
- 通过 LangChain 的
DocumentLoader
加载文档(如 PDF、网页); - 通过
TextSplitter
将文档分割为片段(chunks);
然后进行向量化与索引构建:
- 通过嵌入模型(如 OpenAI 的
text-embedding-ada-002
)将文本转为向量; - 通过 LangChain 的 FAISS 接口,将向量存入 FAISS 数据库,构建索引;
通过上述方式,我们已经基本完成了工作流的构建。当用户输入到来时,我们可以基于刚才构建的工作流来进行检索增强生成,具体来说:
- 用户提问时,LangChain 调用 FAISS 进行相似性检索,找到相关文档片段;
- 将检索结果与用户输入合并,输入 LLM 生成最终回答。
RAG + LangChain + FAISS 三者关系
组件 | 角色 | 与 RAG 的关系 |
---|---|---|
LangChain | 提供 RAG 的流程框架,整合模型、检索、生成等模块 | 负责串联检索(FAISS)与生成(LLM),实现端到端的 RAG 流程 |
FAISS | 高效存储和检索文本向量,支撑 RAG 的检索环节 | 作为知识库的存储与搜索引擎,直接影响 RAG 的准确性和速度 |
RAG | RAG 自身是一种结合检索与生成的技术范式 | LangChain + FAISS 是 RAG 的具体实现工具链的一种 |
RAG 与 AI Agent 的关系?
RAG(检索增强生成)与 AI Agent(人工智能代理)是两种互补的技术范式,分别聚焦于知识增强和自主决策,但在实际应用中常结合使用,共同构建更智能、更强大的系统。
核心定位与功能对比
维度 | RAG | AI Agent |
---|---|---|
核心目标 | 通过检索外部知识库生成准确回答 | 自主规划、决策并执行复杂任务 |
关键技术 | 检索、上下文增强、生成模型 | 任务分解、工具调用、多步推理 |
输出形式 | 文本问答(基于检索到的内容生成检索增强的文本) | 动作序列(如调用 API、修改数据等) |
依赖数据 | 外部知识库(静态或动态) | 环境状态、用户目标、工具接口 |
总结
- RAG 是 Agent 的“知识库”:提供实时、准确的外部信息支持,解决 Agent 知识的局限性;
- Agent 是 RAG 的“决策引擎”:扩展 RAG 的应用场景,从简单问答升级到多步骤任务执行;
- 协同价值:两者结合可实现“感知-检索-决策-执行”的闭环,是构建 AGI 的关键路径之一。