Anaconda、conda、pip的区别

文章讲述了pip和conda这两个工具在安装Python包和环境管理上的差异,pip主要用于基本的Python包安装,可能需要额外编译环境;而conda则更全面,可安装非Python包,提供多版本Python环境管理,且包含在Anaconda软件发行版中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有看到一些很好的文章,这个是我看到的讲得最清楚的,大家可以直接爬楼:
https://zhuanlan.zhihu.com/p/379321816

pip install和conda install的区别

国内使用pip的网速快,conda和pip的包有很多重合的,但是不完全重叠,有一些包只能通过其中一个才能装。

  • pip(pip install packages)是一个安装包的软件,用来安装python的包,pip不能支持python语言之外的依赖项,有的时候,pip下载的包需要某一些编译环境,否则编译会失败。

  • conda是一个环境管理的工具,conda是用来安装conda package的,虽然大部分的conda package都是python的,但是除了python的包,conda还可以安装mkl这种写c/c++的包。conda安装的都是编译好的二进制包,不需要额外的编译。
    conda除了可以用来下载包,还可以用来管理多个版本的python。如果用户需要安装不同版本的python的软件包,在conda环境中,无需切换到其他的环境管理器,只需要几个命令,就可以设置跳转到一个完全独立的环境中去运行不同版本的python

Anaconde和conda的区别

conda目前是Anaconda默认的Python包和环境管理工具,所以安装了Anaconda的完整版,也就默认安装了conda,但是尽管conda被打包在Anaconda中,这两者也是有着不同目标的不同事物。

  • Anaconda是一个软件发行版,软件发行版是一个预先建立和配置好的packages的集合,可以被安装在操作系统上使用。Anaconda是Anaconda公司开发的,一个包含pyData生态中的核心软件的完全发行版,它包含了python本身和数百个第三方开源项目的特进制文件,比如conda、numpy、scipy、ipython等。

  • Miniconde也是一个软件的发行版,它的本质是一个用来安装空的conda环境的安装器,Miniconda仅包含conda和conda的依赖,不包含其他的包,可以使用conda install anaconda来讲anaconda安装到miniconda中。

  • conda是一个包和环境管理器、包管理工具,是一个用来自动化安装、升级、删除packages的工具,conda拥有“conda install”、“conda update”、“conda remove”等子命令。

    conda是一个辅助进行包管理和环境管理的工具,目前是Anaconda默认的Python包和环境管理工具,所以安装了Anaconda完整版,就默认安装了conda
    conda即具有pip的包管理能力,同时也具备vitualenv的环境管理功能,因此在功能上可以认为conda是pip和vitualenv的组合

### 关系及用途 #### Anaconda Anaconda 是一个面向科学计算的 Python 发行版本,不仅包含了 Python 解释器本身还预装了大量的数据处理科学运算库,例如 NumPy、Pandas 等。更重要的是,Anaconda 配备了包管理工具 Conda 环境管理系统,这使得用户能够方便地管理部署不同版本的应用程序及其依赖项[^2]。 #### Conda Conda 是一款开源的软件包管理环境管理系统,支持多种编程语言而不仅仅是限于 Python 生态圈内。借助 Conda 可以轻松解决项目之间的依赖冲突问题;另外,即使是在没有预先安装 Anaconda 的情况下也能单独下载并使用 Conda 来构建所需的开发环境[^1]。 #### Pip 作为 Python 官方推荐的标准包索引服务 PyPI (Python Package Index) 所对应的命令行客户端工具,`pip` 主要用于查找、下载以及安装来自 PyPI 上发布的第三方扩展模块。尽管 `pip` 功能强大且简单易用,在面对复杂多变的实际应用场景特别是涉及到跨平台移植或是存在多个相互依存组件时,则显得力不从心——此时就凸显出了像 Conda 这样的综合性解决方案的优势所在。 ### 使用场景 对于初学者来说,如果主要关注点在于快速上手进行数据分析或者机器学习方面的实践练习的话,那么直接采用 Anaconda 将会是非常合适的选择因为其内置了许多常用的库可以直接拿来即用无需额外配置任何东西。 当开发者已经熟悉了一定程度上的 Python 编程并且希望更加灵活自由地定制自己的工作流比如只想要获取特定几个常用的数据分析类库而不愿携带整个臃肿庞大的 Anaconda 套件出行的时候就可以考虑仅安装 Miniconda 或者干脆单独引入 Conda 工具来完成相应任务。 至于那些只需要偶尔添加一两个小型插件到现有工程中的情况或者是追求极致简洁轻量级方案的人群而言继续沿用自带的 pip 应该就已经足够满足需求了不过需要注意确保所处环境中各个部分之间不会发生兼容性方面的问题。 ```bash # 创建一个新的 conda 虚拟环境名为 myenv 并激活它 $ conda create --name myenv python=3.8 $ conda activate myenv # 在当前活跃环境下通过 conda 安装 numpy 包 (myenv)$ conda install numpy # 同样条件下利用 pip 安装 requests 包 (myenv)$ pip install requests ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值