自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

码农康康

好好整整博客

  • 博客(25)
  • 资源 (35)
  • 收藏
  • 关注

原创 【架构师干货】嵌入式技术基础

本文介绍了嵌入式系统的核心组成与关键技术。主要内容包括:1)嵌入式微处理器的两种体系结构(冯诺依曼结构和哈佛结构)及其特点;2)微处理器的分类方式(按字长、集成度、用途);3)多核处理器的协调实现方式与调度算法;4)嵌入式软件的分类(系统软件、应用软件、支撑软件)及其特点;5)板级支持包(BSP)的功能与组成,包括BootLoader和设备驱动程序;6)嵌入式系统的组成、特性、分类和分层架构。文章系统梳理了嵌入式领域的基础概念与技术要点,为理解嵌入式系统提供了全面的知识框架。

2025-08-18 22:59:02 396

原创 【计算机数学】关于全概率和贝叶斯公式的使用场景说明

本文介绍了概率论中的两个重要公式及其应用。全概率公式用于计算多阶段事件的总概率,通过划分完备事件组(如A、B、C)及各阶段的条件概率(P(D|A)等)来求解最终事件D的概率。贝叶斯公式则是全概率的逆推,在已知结果(D)的情况下反求原因(A)的条件概率。文章通过射击例题展示了公式的实际应用:计算两人独立射击的联合命中率(80%)、随机选择一人射击的命中率(55%),以及已知命中时求是甲命中的条件概率(5/11)。最后指出多阶段概率问题中,计算第二阶段用全概率公式,反推第一阶段则用贝叶斯公式。

2025-08-17 18:52:37 530

原创 【架构师干货】数据库管理系统

本文系统介绍了数据库系统的基本概念和原理。主要内容包括:数据库系统的组成(数据、DB、DBS、DBMS)及其特征;数据库三级模式(内模式、模式、外模式)与两级映像机制;数据库设计六个阶段(需求分析、概念设计、逻辑设计、物理设计、实施、运维);数据模型(关系模型、概念模型等)及其三要素(数据结构、操作、约束);E-R图表示方法及转换规则;关系代数运算(并、交、差、笛卡尔积、投影、选择、连接);函数依赖理论(部分/传递依赖)和Armstrong公理系统(自反律、增广律、传递律、合并规则)。构成完整数据库知识框架

2025-08-17 12:42:27 651

原创 【数据库干货】六大范式速记

数据库范式简介及记忆方法 数据库范式(1NF-5NF)是规范数据库设计的标准,旨在减少冗余、避免异常。1NF要求字段原子性;2NF消除部分依赖;3NF消除传递依赖;BCNF要求决定因素必须是候选键;4NF处理多值依赖;5NF解决连接依赖。记忆口诀:"原子完全传递候选,多值连接"对应1NF至5NF的核心要求。通过逐步分解冗余表,可直观理解各范式作用:1NF拆分多值字段,2NF消除部分依赖,3NF处理传递依赖,BCNF更严格,4NF分离独立多值,5NF优化复杂关系。

2025-08-17 11:40:14 607

原创 【架构师干货】操作系统

本文摘要: 操作系统是管理计算机软硬件资源的核心软件,具有并发性、共享性、虚拟性和不确定性特征。主要功能包括进程管理、文件管理、存储管理、设备管理和作业管理。操作系统分为批处理、分时、实时、网络、分布式、微机和嵌入式等多种类型。进程管理涉及进程状态转换、同步互斥(PV操作)和调度算法(FCFS、时间片轮转、优先级等)。嵌入式系统具有微型化、可定制、实时性等特点。多核CPU调度采用全局队列或局部队列方式。文章还介绍了前趋图、进程资源图等概念,以及死锁条件和解决策略。

2025-08-16 23:36:15 858

原创 【架构师干货】计算机硬件基础知识

高速缓存Cache用来存储当前最活跃的程序和数据,直接与CPU交互,位于CPU和主存之间,容量小,速度为内存的5-10倍,由半导体材料构成。磁头首先要寻找到对应的磁道,然后等待磁盘进行周期旋转,旋转到指定的扇区,才能读取到对应的数据,因此,会产生寻道时间和等待时间。在计算机中,处理器的运算主要依赖于晶振芯片给CPU提供的脉冲频率,处理器的运算速度也依赖于这个晶振芯片。奇校验:编码中,含有奇数个1,发送给接收方,接收方收到后,会计算收到的编码有多少个1,如果是奇数个,则无误,若是偶数个,则有误。

2025-08-03 10:27:10 682

原创 正则表达式 速查速记

本文详细介绍了正则表达式的基本语法和使用方法,主要包括:1.基本字符匹配规则(如通配符、字符集等);2.特殊字符类(如数字\d、空白符\s等);3.量词(如*、+、{n}等匹配次数控制);4.定位符(如^、$等边界匹配);5.分组引用和条件匹配;6.贪婪与非贪婪模式;7.旗标参数设置;8.前瞻后顾机制;9.替换操作中的大小写转换等。文中提供了大量示例说明各语法元素的具体用法,如匹配RGB颜色值、电话号码格式验证等实用案例。该指南全面覆盖了正则表达式的基础功能和高级特性。

2025-07-29 00:05:21 882

原创 【计算机数学】核密度估计与自适应带宽的核密度估计

最近看论文,发现一个很不错的概率密度估计方法。在此小记一下。 先来看看准备知识。 密度估计经常在统计学中作为一种使用有限的样本来估计其概率密度函数的方法。 我们在研究随机变量的过程中,随机变量的概率密度函数的作用是描述随机变量的特性。(概率密度函数是用来描述连续型随机变量取值的密集程度的,举例:某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数

2017-06-29 22:26:44 43283 4

原创 【机器学习基础】CentOS7 安装python科学计算库

本文详细介绍了在CentOS7系统下搭建Python开发环境的完整流程。主要内容包括:1)通过vimplus配置Vim开发环境;2)安装pip包管理工具及相关依赖;3)安装numpy、scipy、matplotlib、scikit-learn等科学计算库;4)配置国内pip源加速下载。文中提供了详细的命令行操作步骤,并针对常见安装问题给出了解决方案,如Tkinter模块缺失处理等。最后列出了相关参考资料,为Linux环境下Python开发环境的搭建提供了完整的指导方案。

2017-05-10 12:42:36 2256 1

原创 【计算机数学】拟阵理论和贪心算法浅析

前言对于一些NP-Hard问题,我们无法找到一个精确的求解方法。使用贪心思想采取贪心算法来求取近似解就成了常用的选择。很多算法名著对贪心算法都有很明确的讲解,这里对贪心算法摘取一下重点,然后我们要引出贪心算法背后的理论依据——拟阵理论。对于拟阵理论,可以查找一些入门典籍,如刘桂真,陈庆华著《拟阵》。贪心算法也称作贪婪算法(Greedy Algorithm),通过做一系列的选择来给出某一问题的最优解。

2017-02-01 14:47:24 16430 4

原创 【计算机数学】次模函数

前言本篇小记要介绍一个解析函数上面的概念——次模函数(Submodular Function)。 次模函数也称作“子模函数”或“亚模函数”,具有次模型(Submodularity),也称“子模性”或“亚模性”,它是经济学上的概念——边缘收益递减 的形式化描述。次模函数在现实世界中有非常广泛的应用。本篇小记要说的就是次模函数的概念以及相关的性质。定义 次模函数对于一个集合函数f:2V→R+f:2^V

2017-01-31 21:52:22 14009

原创 【数值分析干货】第七章 常微分方程的数值解法

数值解法相关公式为什么要研究数值解法?所谓数值解法,就是设法将常微分方程离散化,建立差分方程,给出解在一些离散点上的近似值.问题 7.1 一阶常微分方程初值问题的一般形式{y′=f(x,y),a⩽x⩽by(a)=α\begin{equation}\left \{\begin{aligned}& y'=f(x,y),a\leqslant x \leqslant b\\&y(a)=\alpha

2017-01-27 12:08:25 9071 1

原创 【数值分析干货】第六章 数值积分

求积公式一般形式∫baf(x)dx=∑k=0nAk+R[f]≈∑k=0nAk\int_a^bf(x)dx=\sum_{k=0}^n A_k+R[f] \approx \sum_{k=0}^n A_k插值型求积公式Ak=∫balk(x)dxA_k=\int _a^b l_k(x)dxR[f]=1(n+1)!∫baf(n+1)(ξx)ωn+1(x)dx,ξx∈(a,b)且与x有关R[f]=\frac{1

2017-01-11 21:55:36 3001

原创 【数值分析干货】第五章 插值与逼近

插值条件φ(xi)=f(xi)=yi,i=0,1,...,n\varphi (x_i)=f(x_i)=y_i,i=0,1,...,n唯一性定理给定{(xi,yi)|i=0,1,...,n}\left \{ (x_i,y_i) |i=0,1,...,n \right \},则满足插值条件的nn次多项式pn(x)p_n(x)唯一.nn次拉格朗日插值多项式Ln(x)=∑k=0nlk(x)ykL_n(x)=

2017-01-11 14:43:12 1654

原创 【数值分析干货】第四章 非线性方程组求根

压缩映射定义4.1 压缩映射{|φ(x2)−φ(x1)|=L|x2−x1|L<1⇒φ(x)为压缩映射.\left\{\begin{matrix}\left | \varphi (x_2) - \varphi (x_1) \right | = L\left | x_2 - x_1 \right | \\ L < 1\end{matrix}\right. \Rightarrow \varphi (

2017-01-09 21:03:34 1347

原创 【数值分析干货】第三章 线性方程组的迭代法

系数矩阵符号AA代表系数矩阵。严格对角占优∑i=1j≠in∣∣aij∣∣⩽|aii|,i=1,2,...,n\begin{equation} \sum_{\substack{i=1\\ j \neq i}}^n \left | a_{ij}\right | \end{equation} \leqslant \left | a_{ii} \right |,i=1,2,...,n对称

2017-01-09 14:26:18 1416

原创 【数值分析干货】第二章 解线性方程组的直接方法

解方程组方法对于线性方程组y=Ax+by=Ax+b常有如下几种求解方法。其中,AA为系数矩阵,xx为解向量。直接三角分解法(Dolittle分解法)前提:各阶顺序主子式不为0.公式:以下LL表示单位下三角矩阵,UU表示一个上三角矩阵。 A=LU,Ly=b,Ux=yA=LU,Ly=b,Ux=y平方根法(Cholesky分解法)前提:系数矩阵AA为对称正定矩阵.公式:以下GG表示下三角矩阵。

2017-01-07 23:41:43 2937

原创 【数值分析干货】 第一章 绪论

基本概念说明:以下公式中,都是使用近似值xx去近似准确值x∗x^*。可分别得到绝对误差,绝对误差限,相对误差和相对误差限。绝对误差e=x∗−x e = x^* - x 绝对误差限|e|⩽ε \left | e \right | \leqslant \varepsilon 相对误差er=x∗−xx∗(定义式) e_r = \frac {x^* - x} {x^*} (定义式) er=x∗−xx(实

2017-01-07 12:28:27 1923

原创 【计算机数学】极限定理

在概率论中,频率是概率的反应,随着观察次数的增多,频率将逐渐稳定于概率。许多随机变量之和的结果会服从或近似服从正态分布。那么极限定理就是要解决这类问题的。在概率论中,通常把一切关于随机现象的平均结果稳定性的定理称为大数定律;把在一定条件下判定随机变量之和的极限分布式正态分布的定理称为中心极限定理。极限定理中最基本的两种类型是“大数定律”和“中心极限定理”。切比雪夫不等式定理1:

2016-07-23 11:12:14 2198

原创 第二章 DOM初识之节点的属性和操作

2.4 DOM的属性nodeName文档里的每个节点都有以下属性。 nodeName:一个字符串,其内容是给定节点的名字。 var name = node.nodeName; * 如果节点是元素节点,nodeName返回这个元素的名称 * 如果是属性节点,nodeName返回这个属性的名称 * 如果是文本节点,nodeName返回一个内容为#text 的字符串 注:n

2016-02-25 11:28:27 2669

原创 第二章 DOM初识之概念、结构、类型和节点的查找

2.1 基本概念DOM:DOM是Document Object Model文档对象模型的缩写。根据W3C DOM规范,DOM是一种与浏览器,平台,语言无关的接口,使得你可以访问页面其他的标准组件。 D:文档 – html 文档 或 xml 文档 O:对象 – document 对象的属性和方法 M:模型 DOM 是针对xml(html)的基于树的API。 DOM树:节点(node)的层次。

2016-02-25 10:58:09 3326

原创 第一章 JavaScript基础

1.1 浏览器的对象树window对象常用方法alert(‘信息’) :消息框 prompt(‘提示信息’,默认值):标准输入框 confirm( ):确认框 open( ):打开一个新窗口 close( ):关闭窗口Form表单对象访问表单的方式:document.forms[n]document.表单名字表单对象常用的属性action <from action=”xxx”> 表单提交的

2016-02-25 10:34:30 778

原创 第二章 Linux系统安装 - VMware虚拟机安装、卸载与使用

2.1 VMware虚拟机安装、卸载与使用(一)安装(1)首先下载VMware软件VMware官方下载地址http://www.vmware.com/。由于官网下载速度较慢而且没有破解密钥,所以,下面给出对应的软件官方文件以及破解密钥的百度云分享链接。VMware软件的下载地址如下:链接:http://pan.baidu.com/s/1V6TNg 密码:gd9m(2)V

2015-12-10 22:40:32 1568

原创 第一章 Linux系统简介

1.1 UNIX与Linux发展历史1.1.1 UNIX发展历史和发行版本UNIX发展历史UNIX操作系统(尤尼斯),是一个强大的多用户、多任务操作系统,支持多种处理器架构,按照操作系统的分类,属于分时操作系统,最早由KenThompson、Dennis Ritchie和Douglas McIlroy于1969年在AT&T的贝尔实验室开发。目前它的商标权由国际开放标准组织所

2015-12-05 11:20:13 2055

原创 B树、B-树、B+树、B*树

二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right); 2.所有结点存储一个关键字; 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树; 如: 二叉搜索树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿

2015-12-04 23:02:45 629

PostSuperman 接口调试工具(我开发的软件)

PostSuperman 是一款基于 Python 和 PyQt5 开发的图形化 HTTP 接口调试工具,旨在为开发者提供一个简洁、高效、功能全面的 API 测试平台。刚写完的软件,如有问题,欢迎在社区提出issue。

2025-08-17

微软Office诊断修复工具

微软Office诊断修复工具文件名为cssemerg97275.diagcab,可以帮助你诊断并解决Office问题,如组件问题,无法激活等等。

2021-01-26

PDF转换成Word工具

PDF转换器是一款界面简洁,操作方便的PDF格式转换工具。拥有这款PDF转换器,您相当于有了WORD转PDF转换器,PDF转WORD转换器,PDF转DOC转换器,PDF转TXT转换器,PDF转HTML转换器,PDF转JPG转换器,PDF转HTML转换器,PDF转FLASH转换器,DOC转PDF转换器,TXT转PDF转换器,EXCEL转PDF转换器,XLS转PDF转换器,PPT转PDF转换器,POWERPOINT转PDF转换器,RTF转PDF转换器……一款万能PDF转换器!只需要将你的其他格式文件用鼠标拖拽到PDF转换器窗口中的拖拽区域,点击开始转换按钮,转换立刻就开始,您只需喝一杯咖啡,所有转换全部搞定!也可以将 PDF 文件转换为各种流行文件格式。 PDF转换器支持:Word、Doc、RTF、TXT、Excel XLS、PowerPoint PPT以及所有可打印格式,方便将您的文档转换为电子书。 PDF转换器同时支持PDF转WORD、PDF转DOC、PDF转RTF、PDF转JPG、PDF转BMP、PDF转GIF、PDF转PNG、PDF转TIF、PDF转TXT、PDF转HTML、PDF转FLASH。

2015-05-04

win7下使用debug.exe来做汇编的方法(文档+dosbox+debug.exe)

win7下木有debug.exe,那要怎么来做汇编。其实你可以的,下载之后,按照步骤你就可以实现了。加油!

2012-12-09

windows7 - 64bit - 自带截图工具

解压后,将目录下SnippingTool.exe文件拷贝到C:\Windows\System32目录下。就可以使用了。

2015-05-04

xmpbox-2.0.13.jar

xmpbox-2.0.13.jar

2021-01-26

nacos-server-1.1.3.zip.tar

服务注册中心配置中心。

2021-01-26

InstallAnywhere2009

将您的应用程序在任何平台上部署。 InstallAnywhere 企业版可用于将任何种类的软件 -- 桌面系统, 企业, 或多模式Web服务- 安装在任何平台上,并对这些应用程序进行配置,以获得最佳的性能。 无论您创建用Java、C++、PERL或C#编写的应用程序还是部署EJB或.NET的Web 服务,所有的安装详细要求都是自动处理的。 InstallAnywhere 企业版可简化复杂的安装并可为程序员提供最大的定制化,同时还有大量的用户交互、客户端/服务器功能和29种语言的本地化。

2021-01-26

pdfbox-debugger-2.0.13.jar

pdfbox-debugger-2.0.13.jar

2021-01-26

preflight-2.0.13.jar

preflight-2.0.13.jar

2021-01-26

struts-2.3.15.2-docs.zip

struts-2 文档

2021-01-26

Hadoop实战中文版

Hadoop实战中文版,[美]Chuck Lam著 韩冀中译 人民邮电出版社

2016-08-31

ascii码实用工具(使用cmd直接用命令输出)

此ascii码转换器非常实用,可以在cmd窗口下直接使用命令调出。 具体做法如下:将ascii.exe拷贝到C:\Windows\System32下。 之后使用cmd直接调出:win+r,输入cmd,回车。 然后在命令行中可以输入:ascii查看帮助,ascii -l查看0~127的ascii码表等功能。 下载后有些安全软件会报毒,忽略即可,保证无毒。

2015-05-04

Mahout实战英文版

Mahout实战 英文版 高清

2016-08-31

推荐系统实践——项亮

推荐系统实践——项亮著

2016-08-31

机器学习实战 中英文版配书中源代码

这本《机器学习实战》,业内的宝典, 重要性我就不说了, 下载后是一个压缩包,内容如下:机器学习实战中文版,机器学习实战英文原版, 书中源代码。

2016-06-03

深度学习(花书).pdf

这本书对各类读者都有一定用处,但我们主要是为两类受众对象而写的。其中 一类受众对象是学习机器学习的大学生(本科或研究生),包括那些已经开始职业 生涯的深度学习和人工智能研究者。另一类受众对象是没有机器学习或统计背景但 希望能快速地掌握这方面知识并在他们的产品或平台中使用深度学习的软件工程师。 深度学习在许多软件领域都已被证明是有用的,包括计算机视觉、语音和音频处理、 自然语言处理、机器人技术、生物信息学和化学、电子游戏、搜索引擎、网络广告和 金融。 为了最好地服务各类读者,我们将本书组织为三个部分。第一部分介绍基本的 数学工具和机器学习的概念。第二部分介绍最成熟的深度学习算法,这些技术基本 上已经得到解决。第三部分讨论某些具有展望性的想法,它们被广泛地认为是深度 学习未来的研究重点。 读者可以随意跳过不感兴趣或与自己背景不相关的部分。熟悉线性代数、概率 和基本机器学习概念的读者可以跳过第一部分,例如,当读者只是想实现一个能工 作的系统则不需要阅读超出第二部分的内容。为了帮助读者选择章节,图1.6 展示了 这本书的高层组织结构的流程图。 我们假设所有读者都具备计算机科学背景。也假设读者熟悉编程,并且对计算 的性能问题、复杂性理论、入门级微积分和一些图论术语有基本的了解。

2018-04-25

securecrt安装程序(含注册机)

先点击Patch,然后选择安装目录中的主程序,再点击Helper程序,然后就可以按照注册机的字段依次填写注册字段了。最终成功!

2018-04-23

机器学习 - Tom Mitchell

这本《机器学习》是计算机行业公认的全世界范围内最好的教材,由美国人Tom Mitchell所著,机械工业出版社出版中文版。值得拥有

2016-04-27

计算机系统概论

[计算机系统概论(原书第2版)].Yale.N.Patt&Sanjay.J.Patel.扫描版.pdf

2015-12-22

算法导论(第三版)英文版

算法导论,这是计算机经典书籍!英文原版,超清晰,非扫描版。

2016-04-07

李航 统计学习方法

李航 统计学习方法,机器学习经典书籍

2016-08-30

人工智能:复杂问题求解的结构和策略

人工智能, 机械工业出版社,计算机科学丛书, 非常经典!

2015-12-11

算法导论,计算机科学丛书

算法导论, 计算机科学丛书, 机械工业出版社, 这是计算机经典书籍!几乎是搞计算机的人手一本, 欢迎下载!

2015-12-11

《数据挖掘与R语言》

《数据挖掘与R语言》,机械工业出版社,计算机科学丛书

2015-11-08

周志明 - 深入理解Java虚拟机(第2版)

深入理解Java虚拟机,周志明著,高清非扫描版,拿走不谢。

2017-01-31

数据结构与算法分析:C语言描述(原书第2版)

数据结构与算法分析:C语言描述, 计算机科学丛书, 机械工业出版社

2015-12-11

Spring源码深度解析.pdf

《Spring源码深度解析》从核心实现和企业应用两个方面,由浅入深、由易到难地对Spring源码展开了系统的讲解,包括Spring的设计理念和整体架构、容器的基本实现、默认标签的解析、自定义标签的解析、bean的加载、容器的功能扩展、AOP、数据库连接JDBC、整合MyBatis、事务、SpringMVC、远程服务、Spring消息服务等内容。   《Spring源码深度解析》不仅介绍了使用Spring框架开发项目必须掌握的核心概念,还指导读者如何使用Spring框架编写企业级应用,并针对在编写代码的过程中如何优化代码、如何使得代码高效给出切实可行的建议,从而帮助读者全面提升实战能力。   《Spring源码深度解析》语言简洁,示例丰富,可帮助读者迅速掌握使用Spring进行开发所需的各种技能。《Spring源码深度解析》适合于已具有一定Java编程基础的读者,以及在Java平台下进行各类软件开发的开发人员、测试人员等。

2018-04-11

算法引论:一种创造性方法

算法导论,机械工业出版社, 计算机中的经典!多的不说, 尽管下载吧!

2015-12-11

Mahout算法解析与案例实战

Mahout算法解析与案例实战

2016-08-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除