系数矩阵
符号AAA代表系数矩阵。
严格对角占优
∑i=1j≠in∣aij∣⩽∣aii∣,i=1,2,...,n\begin{equation} \sum_{\substack{i=1\\ j \neq i}}^n \left | a_{ij}\right | \end{equation} \leqslant \left | a_{ii} \right |,i=1,2,...,ni=1j=i∑n∣aij∣⩽∣aii∣,i=1,2,...,n
对称正定
判定方法1:特征值全是正,且对称;
判定方法2:各阶顺序主子式全是正,且对称。
系数矩阵的形式化说明
A=D−L−UA=D-L-UA=D−L−U
D=diag(a11,a22,...,ann)D=diag(a_{11},a_{22},...,a_{nn})D=diag(a11,a22,...,ann)
−L=[0a210a31a320.........an1an2...ann−10]-L= \begin{bmatrix} 0 & & & & \\ a_{21} & 0 & & & \\ a_{31} & a_{32} & 0 & & \\ ... & ... &... & & \\ a_{n1} &a_{n2} & ... &a_{nn-1} & 0 \end{bmatrix} −L=0a21a31...an10a32...an20......ann−10
−U=[0a12a13...a1n0a23...a2n.........0an−1,n0]-U= \begin{bmatrix} 0 & a_{12} & a_{13} & ... & a_{1n}\\ & 0 & a_{23} & ... & a_{2n}\\ & & ... & ... & ...\\ & & & 0 & a_{n-1,n} \\ & & & & 0 \end{bmatrix} −U=0a120a13a23............0a1na2n...an−1,n0
迭代矩阵
符号MMM代表系数矩阵。
先验、后验误差
∥x(k)−x∗∥⩽∥M∥k1−∥M∥∥x(1)−x(0)∥\left \| x^{(k)} - x^* \right \| \leqslant \frac {\left \| M \right \|^k} {1- \left \| M \right \|}\left \| x^{(1)} - x^{(0)}\right \|x(k)−x∗⩽1−∥M∥∥M∥kx(1)−x(0)
∥x(k)−x∗∥⩽∥M∥1−∥M∥∥x(k)−x(k−1)∥\left \| x^{(k)} - x^* \right \| \leqslant \frac {\left \| M \right \|} {1- \left \| M \right \|}\left \| x^{(k)} - x^{(k-1)}\right \|x(k)−x∗⩽1−∥M∥∥M∥x(k)−x(k−1)
收敛条件
迭代矩阵MMM收敛⇔ρ(M)<1\Leftrightarrow \rho(M) < 1⇔ρ(M)<1;
迭代矩阵MMM收敛⇐∥M∥<1\Leftarrow \left \| M \right \| < 1⇐∥M∥<1.
常用的迭代解法
-
Jacobi迭代法
分量形式
xi(k+1)=1aii(bi−∑j=1i−1aijxj(k)−∑j=i+1naijxj(k))x_i^{(k+1)}=\frac{1}{ a_{ii}} \left ( b_i - \sum_{j=1}^{i-1} a_{ij}x^{(k)}_j -\sum_{j=i+1}^n a_{ij}x^{(k)}_j \right )xi(k+1)=aii1(bi−j=1∑i−1aijxj(k)−j=i+1∑naijxj(k))i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...
矩阵形式
B=D−1(L+U)B=D^{-1}\left ( L+U \right )B=D−1(L+U)
收敛条件
(1) 系数矩阵AAA以及2D−A2D-A2D−A都是对称正定矩阵⇒\Rightarrow⇒Jacobi迭代法收敛;
(2) 系数矩阵AAA严格对角占优⇒\Rightarrow⇒Jacobi迭代法收敛 -
Gauss-Seidel迭代法
分量形式
xi(k+1)=1aii(bi−∑j=1i−1aijxj(k+1)−∑j=i+1naijxj(k))x_i^{(k+1)}=\frac{1}{ a_{ii}} \left ( b_i - \sum_{j=1}^{i-1} a_{ij}x^{(k+1)}_j -\sum_{j=i+1}^n a_{ij}x^{(k)}_j \right )xi(k+1)=aii1(bi−j=1∑i−1aijxj(k+1)−j=i+1∑naijxj(k))i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...
矩阵形式
G=(D−L)−1UG=\left (D-L\right )^{-1}UG=(D−L)−1U
收敛条件
(1) 系数矩阵AAA是对称正定矩阵⇒\Rightarrow⇒Gauss-Seidel迭代法收敛;
(2) 系数矩阵AAA严格对角占优⇒\Rightarrow⇒Gauss-Seidel迭代法收敛 -
SOR迭代法
分量形式
xi(k+1)=xi(k)+ωaii(bi−∑j=1i−1aijxj(k+1)−∑j=inaijxj(k))x_i^{(k+1)}=x_i^{(k)} + \frac{\omega}{ a_{ii}} \left ( b_i - \sum_{j=1}^{i-1} a_{ij}x^{(k+1)}_j -\sum_{j=i}^n a_{ij}x^{(k)}_j \right )xi(k+1)=xi(k)+aiiω(bi−j=1∑i−1aijxj(k+1)−j=i∑naijxj(k))i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...
矩阵形式
£ω=(D−ωL)−1[(1−ω)D+ωU] \pounds _\omega =\left (D-\omega L\right )^{-1} \left [ \left ( 1- \omega \right ) D+\omega U \right ]£ω=(D−ωL)−1[(1−ω)D+ωU]
收敛条件
(1) SOR收敛 ⇒\Rightarrow⇒ 0<ω<20 < \omega < 20<ω<2;
(2) {系数矩阵A是对称正定矩阵0<ω<2⇒SOR迭代法收敛\left\{\begin{matrix}
系数矩阵A是对称正定矩阵\\
0 < \omega < 2
\end{matrix}\right. \Rightarrow SOR迭代法收敛{系数矩阵A是对称正定矩阵0<ω<2⇒SOR迭代法收敛
(3) {系数矩阵A严格对角占优0<ω⩽1⇒SOR迭代法收敛\left\{\begin{matrix}
系数矩阵A严格对角占优\\
0 < \omega \leqslant 1
\end{matrix}\right. \Rightarrow SOR迭代法收敛{系数矩阵A严格对角占优0<ω⩽1⇒SOR迭代法收敛