【数值分析干货】第三章 线性方程组的迭代法

本文详细介绍了线性代数中求解线性方程组的几种迭代方法,包括Jacobi迭代法、Gauss-Seidel迭代法及SOR迭代法,并探讨了这些方法的收敛条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系数矩阵

符号AAA代表系数矩阵。

严格对角占优

∑i=1j≠in∣aij∣⩽∣aii∣,i=1,2,...,n\begin{equation} \sum_{\substack{i=1\\ j \neq i}}^n \left | a_{ij}\right | \end{equation} \leqslant \left | a_{ii} \right |,i=1,2,...,ni=1j=inaijaii,i=1,2,...,n

对称正定

判定方法1:特征值全是正,且对称;
判定方法2:各阶顺序主子式全是正,且对称。

系数矩阵的形式化说明

A=D−L−UA=D-L-UA=DLU

D=diag(a11,a22,...,ann)D=diag(a_{11},a_{22},...,a_{nn})D=diag(a11,a22,...,ann)

−L=[0a210a31a320.........an1an2...ann−10]-L= \begin{bmatrix} 0 & & & & \\ a_{21} & 0 & & & \\ a_{31} & a_{32} & 0 & & \\ ... & ... &... & & \\ a_{n1} &a_{n2} & ... &a_{nn-1} & 0 \end{bmatrix} L=0a21a31...an10a32...an20......ann10

−U=[0a12a13...a1n0a23...a2n.........0an−1,n0]-U= \begin{bmatrix} 0 & a_{12} & a_{13} & ... & a_{1n}\\ & 0 & a_{23} & ... & a_{2n}\\ & & ... & ... & ...\\ & & & 0 & a_{n-1,n} \\ & & & & 0 \end{bmatrix} U=0a120a13a23............0a1na2n...an1,n0

迭代矩阵

符号MMM代表系数矩阵。

先验、后验误差

∥x(k)−x∗∥⩽∥M∥k1−∥M∥∥x(1)−x(0)∥\left \| x^{(k)} - x^* \right \| \leqslant \frac {\left \| M \right \|^k} {1- \left \| M \right \|}\left \| x^{(1)} - x^{(0)}\right \|x(k)x1MMkx(1)x(0)

∥x(k)−x∗∥⩽∥M∥1−∥M∥∥x(k)−x(k−1)∥\left \| x^{(k)} - x^* \right \| \leqslant \frac {\left \| M \right \|} {1- \left \| M \right \|}\left \| x^{(k)} - x^{(k-1)}\right \|x(k)x1MMx(k)x(k1)

收敛条件

迭代矩阵MMM收敛⇔ρ(M)<1\Leftrightarrow \rho(M) < 1ρ(M)<1;
迭代矩阵MMM收敛⇐∥M∥<1\Leftarrow \left \| M \right \| < 1M<1.

常用的迭代解法

  1. Jacobi迭代法
    分量形式
    xi(k+1)=1aii(bi−∑j=1i−1aijxj(k)−∑j=i+1naijxj(k))x_i^{(k+1)}=\frac{1}{ a_{ii}} \left ( b_i - \sum_{j=1}^{i-1} a_{ij}x^{(k)}_j -\sum_{j=i+1}^n a_{ij}x^{(k)}_j \right )xi(k+1)=aii1(bij=1i1aijxj(k)j=i+1naijxj(k))i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...
    矩阵形式
    B=D−1(L+U)B=D^{-1}\left ( L+U \right )B=D1(L+U)
    收敛条件
    (1) 系数矩阵AAA以及2D−A2D-A2DA都是对称正定矩阵⇒\RightarrowJacobi迭代法收敛;
    (2) 系数矩阵AAA严格对角占优⇒\RightarrowJacobi迭代法收敛

  2. Gauss-Seidel迭代法
    分量形式
    xi(k+1)=1aii(bi−∑j=1i−1aijxj(k+1)−∑j=i+1naijxj(k))x_i^{(k+1)}=\frac{1}{ a_{ii}} \left ( b_i - \sum_{j=1}^{i-1} a_{ij}x^{(k+1)}_j -\sum_{j=i+1}^n a_{ij}x^{(k)}_j \right )xi(k+1)=aii1(bij=1i1aijxj(k+1)j=i+1naijxj(k))i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...
    矩阵形式
    G=(D−L)−1UG=\left (D-L\right )^{-1}UG=(DL)1U
    收敛条件
    (1) 系数矩阵AAA是对称正定矩阵⇒\RightarrowGauss-Seidel迭代法收敛;
    (2) 系数矩阵AAA严格对角占优⇒\RightarrowGauss-Seidel迭代法收敛

  3. SOR迭代法
    分量形式
    xi(k+1)=xi(k)+ωaii(bi−∑j=1i−1aijxj(k+1)−∑j=inaijxj(k))x_i^{(k+1)}=x_i^{(k)} + \frac{\omega}{ a_{ii}} \left ( b_i - \sum_{j=1}^{i-1} a_{ij}x^{(k+1)}_j -\sum_{j=i}^n a_{ij}x^{(k)}_j \right )xi(k+1)=xi(k)+aiiω(bij=1i1aijxj(k+1)j=inaijxj(k))i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...i=1,2,...,n;k=0,1,...
    矩阵形式

£ω=(D−ωL)−1[(1−ω)D+ωU] \pounds _\omega =\left (D-\omega L\right )^{-1} \left [ \left ( 1- \omega \right ) D+\omega U \right ]£ω=(DωL)1[(1ω)D+ωU]

收敛条件
(1) SOR收敛 ⇒\Rightarrow 0<ω<20 < \omega < 20<ω<2;
(2) {系数矩阵A是对称正定矩阵0<ω<2⇒SOR迭代法收敛\left\{\begin{matrix} 系数矩阵A是对称正定矩阵\\ 0 < \omega < 2 \end{matrix}\right. \Rightarrow SOR迭代法收敛{系数矩阵A是对称正定矩阵0<ω<2SOR迭代法收敛
(3) {系数矩阵A严格对角占优0<ω⩽1⇒SOR迭代法收敛\left\{\begin{matrix} 系数矩阵A严格对角占优\\ 0 < \omega \leqslant 1 \end{matrix}\right. \Rightarrow SOR迭代法收敛{系数矩阵A严格对角占优0<ω1SOR迭代法收敛

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农康康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值