【数值分析干货】 第一章 绪论

基本概念

说明:以下公式中,都是使用近似值xxx去近似准确值x∗x^*x。可分别得到绝对误差,绝对误差限,相对误差和相对误差限。

绝对误差

e=x∗−x e = x^* - x e=xx

绝对误差限

∣e∣⩽ε \left | e \right | \leqslant \varepsilon eε

相对误差

er=x∗−xx∗(定义式) e_r = \frac {x^* - x} {x^*} (定义式)er=xxx(定义式)
er=x∗−xx(实际使用) e_r = \frac {x^* - x} {x} (实际使用)er=xxx(实际使用)

相对误差限

εr=ε∣x∣ \varepsilon_r = \frac { \varepsilon } {\left |x\right|} εr=xε

四舍五入的绝对误差限

凡是由精确值经过四舍五入得到的近似值,其绝对误差限等于该近似值末数位的半个单位。
ε=该近似值末数位的半个单位\varepsilon = 该近似值末数位的半个单位ε=该近似值末数位的半个单位

有效数字

定义1.1 nnn位有效数字

设数xxx是数x∗x^*x的近似值。如果xxx的绝对误差限是它的某一位的半个单位,并且从xxx左起第一个非零数字到该位共有nnn位,则称这个nnn个数字为xxx的有效数字,也称用xxx近似x∗x^*x具有nnn位有效数字
xxx总可以写成如下的形式:
x=±0.α1α2...αk×10m (α1≠0)x = \pm 0.\alpha_1\alpha_2...\alpha_k \times10^m \, (\alpha_1\neq 0)x=±0.α1α2...αk×10m(α1=0)

  1. xxx具有nnn位有效数字 ⇔∣x∗−x∣⩽12×10m−n\Leftrightarrow \left | x^* - x \right | \leqslant \frac{1}{2}\times10^{m-n}xx21×10mn
  2. xxx具有nnn位有效数字 ⇒{εr⩽12α1×10m−nε⩽0.α1α2...αk×10m2(α1+1)×101−n\Rightarrow \left\{\begin{matrix}\varepsilon_r \leqslant \frac{1}{2\alpha_1}\times10^{m-n} \\ \varepsilon\leqslant\frac{0.\alpha_1\alpha_2...\alpha_k \times 10^m}{2(\alpha_1+1)}\times10^{1-n}\end{matrix}\right.{εr2α11×10mnε2(α1+1)0.α1α2...αk×10m×101n

数值计算中的几个原则

  1. 避免两个相近的数相减
  2. 防止大数“吃掉”小数
  3. 绝对值太小的数不宜作除数
  4. 注意简化计算程序,减少计算次数
  5. 选用数值稳定性好的算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农康康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值