【计算机数学】关于全概率和贝叶斯公式的使用场景说明

全概率公式

全概率公式:首先建立一个完备事件组的思想,其实全概就是已知第一阶段求第二阶段,比如第一阶段分AAABBBCCC三种,然后AAABBBCCC中均有DDD发生的概率,最后让你求DDD的概率
P(D)=P(A)∗P(D∣A)+P(B)∗P(D∣B)+P(C)∗P(D∣C)P(D)=P(A)*P(D|A)+ P(B)*P(D|B)+ P(C)*P(D|C)P(D)=P(A)P(DA)+P(B)P(DB)+P(C)P(DC

贝叶斯公式

贝叶斯公式:其实原本应该叫逆概公式,为了纪念贝叶斯这样取名而已.在全概公式理解的基础上,贝叶斯其实就是已知第二阶段反推第一阶段,这时候关键是利用条件概率公式做个乾坤大挪移,跟上面建立的AAABBBCCCDDD模型一样,已知P(D)P(D)P(D),求是在AAA发生下DDD发生的概率,这就是贝叶斯
P(A∣D)=P(AD)P(D)=P(A)∗P(D∣A)P(D)P(A|D)=\frac{P(AD)}{P(D)}=\frac{P(A)*P(D|A)}{P(D)}P(AD)=P(D)P(AD)=P(D)P(A)P(DA)

例题

甲乙两人独立对同一目标射击一次,命中率分别为50%和60%。

问题:
(1)甲乙同时射击,求命中率;
(2)甲乙先取一人,由其射击,求命中率;
(3)甲乙先取一人,由其射击,已知目标被命中,求是甲命中的概率。

解:
设 事件A={甲中}A=\{甲中\}A={甲中},事件B={乙中}B=\{乙中\}B={乙中},事件C={命中}C=\{命中\}C={命中}P(A)=50P(A)=50%P(A)=50,P(B)=60P(B)=60%P(B)=60,C=A+BC=A+BC=A+B
(1)
P(C)=P(A+B)=P(A)+P(B)−P(AB)=P(A)+P(B)−P(A)P(B)=0.8\begin{equation} \begin{aligned} P(C) &= P(A+B) \\ &= P(A) + P(B) - P(AB) \\ &= P(A) + P(B) - P(A)P(B) \\ &= 0.8 \end{aligned} \end{equation}P(C)=P(A+B)=P(A)+P(B)P(AB)=P(A)+P(B)P(A)P(B)=0.8;
(2)令A1={选甲}A_1 = \{选甲\}A1={选甲}A2={选乙}A_2 = \{选乙\}A2={选乙},则P(A1)=12,P(A2)=12P(A_1)=\frac{1}{2},P(A_2)=\frac{1}{2}P(A1)=21,P(A2)=21;
P(C)=P(A1)P(C∣A1)+P(A2)P(C∣A2)=0.55\begin{equation} \begin{aligned} P(C) &= P(A1)P(C|A1) + P(A2)P(C|A2) \\ &= 0.55 \end{aligned} \end{equation}P(C)=P(A1)P(CA1)+P(A2)P(CA2)=0.55
(3)
P(A1∣C)=P(A1C)P(C)=P(A1)P(C∣A1)P(C)=P(A1)P(C∣A1)P(A1)P(C∣A1)+P(A2)P(C∣A2)\begin{equation} \begin{aligned} P(A_1|C) &= \frac{P(A_1C)}{P(C)} \\ &= \frac{P(A_1)P(C|A_1)}{P(C)} \\ &= \frac{P(A_1)P(C|A_1)}{P(A_1)P(C|A_1) + P(A_2)P(C|A_2)} \end{aligned} \end{equation}P(A1C)=P(C)P(A1C)=P(C)P(A1)P(CA1)=P(A1)P(CA1)+P(A2)P(CA2)P(A1)P(CA1)
注:一个问题分了两步,如果解决第二步,求第二步的概率要使用全概率公式;而要解决第一步的概率,要使用贝叶斯公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农康康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值