要找出若干个数异或和为特定的数,我们可以先求出该异或空间的基,然后求解是否能异或得到结果.首先,我们用高斯消元求出由组成的异或空间的基.我们不妨设这个基由整数
构成,其中
.从基中选取若干个整数,显然有
种取法.因此,t维异或空间中共有
个整数,与这
种取法一一对应.我们设其主元的最高位的位数为
,满足
.高斯消元后,由简化梯形矩阵的特点可知,"主元所在位为1"的整数是唯一的.
因为基底与
表出相同的异或空间,所以异或空间中第k小的数就是从
中选出若干个数做异或运算,能表出的第k小的整数.而第
位是1的只有
,所以选取
的数一定比不选取
的数要大.同理,异或空间中最大的数就是
全部异或起来的结果.
综上所述,我们把询问中给出的k进行二进制分(k-1是为了把最小的数变成第0小,题目中是第1小),如果k-1的第j位等于1,就选取,最后把所有选出来的b异或起来,得到答案.特别注意,当
时,无解.
除此之外,我们还需注意边界情况,异或空间中第k小的整数与题目中所求的整数稍有不同,题目不允许的运算,但是在异或空间允许,造成的后果就是异或空间中一定包含0,但是从
中选取若干个不同的数进行异或不一定能得到0.我们要检查梯形矩阵中是否存在"零行",就是判断能否得到0,若不能得到0,就把k而不是k-1进行二进制分解(就相当于在统计顺序时跳过了"0"这个数)
#include <bits/stdc++.h>
#define ull unsigned long long
using namespace std;
const int N = 10010;
ull a[N], ans;
int n, m, t, T, C;
void solve(){
int n;
cin >> n;
for (int i = 1; i <= n; ++i)
cin >> a[i];
bool zero = 0;
/* 表示异或空间的秩数,即基底的数量 */
t = n;
for (int i = 1; i <= n; ++i){
/* 把主元位数最大的行换到最上面 */
for (int j = i + 1; j <= n; ++j)
if (a[j] > a[i])
swap(a[j], a[i]);
/* 如果所有的主元已经消除,此时的秩数位n-i */
if (a[i] == 0){
zero = 1;
t = i - 1;
break;
}
for (int k = 63; ~k; --k)
if (a[i] >> k & 1){
for (int j = 1; j <= n; ++j)
if (i != j && (a[j] >> k & 1))
a[j] ^= a[i];
break;
}
}
cin >> m;
cout << "Case #" << C << ":\n";
for (int i = 1; i <= m; ++i){
ull k, ans = 0;
cin >> k;
if (zero)
--k;
if (k >= (ull)1 << t)
puts("-1");
else{
for (int i = t - 1; i >= 0; --i)
if (k >> i & 1)
ans ^= a[t - i];
cout << ans << '\n';
}
}
}
signed main(){
cin >> T;
for (C = 1; C <= T; ++C)
solve();
}