AcWing 210. 异或运算 (异或空间 + 线性空间)

本文探讨了一种通过高斯消元找出异或和为特定数的数的方法。首先,确定异或空间的基底,然后计算可能的组合。利用二进制分治策略,可以有效地找到异或空间中的第k小整数。文章通过实例展示了如何解决此类问题,并提供了相应的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 要找出若干个数异或和为特定的数,我们可以先求出该异或空间的基,然后求解是否能异或得到结果.首先,我们用高斯消元求出由a_1, a_2, a_3, ...a_n组成的异或空间的基.我们不妨设这个基由整数b_1, b_2, b_3, ...b_t构成,其中b_1>b_2>b_3>...b_t.从基中选取若干个整数,显然有2^t种取法.因此,t维异或空间中共有2^t个整数,与这2^t种取法一一对应.我们设其主元的最高位的位数为c_1, c_2,c_3...c_t,满足c_1>c_2>c_3>...>c_t.高斯消元后,由简化梯形矩阵的特点可知,"主元所在位为1"的整数是唯一的.

 因为基底b_1, b_2, b_3, ...b_ta_1, a_2, a_3, ...a_n表出相同的异或空间,所以异或空间中第k小的数就是从  b_1, b_2, b_3, ...b_t中选出若干个数做异或运算,能表出的第k小的整数.而第c_1位是1的只有b_1,所以选取b_1的数一定比不选取b_1 的数要大.同理,异或空间中最大的数就是b_1, b_2, b_3, ...b_t全部异或起来的结果.

综上所述,我们把询问中给出的k进行二进制分(k-1是为了把最小的数变成第0小,题目中是第1小),如果k-1的第j位等于1,就选取b_{t-j},最后把所有选出来的b异或起来,得到答案.特别注意,当k>2^t时,无解.

除此之外,我们还需注意边界情况,异或空间中第k小的整数与题目中所求的整数稍有不同,题目不允许a_ixora_i的运算,但是在异或空间允许,造成的后果就是异或空间中一定包含0,但是从a_1, a_2, a_3, ...a_n中选取若干个不同的数进行异或不一定能得到0.我们要检查梯形矩阵中是否存在"零行",就是判断能否得到0,若不能得到0,就把k而不是k-1进行二进制分解(就相当于在统计顺序时跳过了"0"这个数)

#include <bits/stdc++.h>
#define ull unsigned long long
using namespace std;
const int N = 10010;
ull a[N], ans;
int n, m, t, T, C;

void solve(){
    int n;
    cin >> n;
    for (int i = 1; i <= n; ++i)
        cin >> a[i];
    bool zero = 0;
    /* 表示异或空间的秩数,即基底的数量 */
    t = n;
    for (int i = 1; i <= n; ++i){
        /* 把主元位数最大的行换到最上面 */
        for (int j = i + 1; j <= n; ++j)
            if (a[j] > a[i])
                swap(a[j], a[i]);
        /* 如果所有的主元已经消除,此时的秩数位n-i */
        if (a[i] == 0){
            zero = 1;
            t = i - 1;
            break;
        }
        for (int k = 63; ~k; --k)
            if (a[i] >> k & 1){
                for (int j = 1; j <= n; ++j)
                    if (i != j && (a[j] >> k & 1))
                        a[j] ^= a[i];
                break;
            }
    }
    cin >> m;
    cout << "Case #" << C << ":\n";
    for (int i = 1; i <= m; ++i){
        ull k, ans = 0;
        cin >> k;
        if (zero)
            --k;
        if (k >= (ull)1 << t)
            puts("-1");
        else{
            for (int i = t - 1; i >= 0; --i)
                if (k >> i & 1)
                    ans ^= a[t - i];
            cout << ans << '\n';
        }
        
    }
        
}
signed main(){
    cin >> T;
    for (C = 1; C <= T; ++C)
        solve();
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值