高斯混合模型(Gaussian Mixture Model,GMM)是一种常用的概率模型,用于对数据进行聚类或密度估计。它假设数据是由多个高斯分布组成的混合体,每个高斯分布对应一个聚类。
在Python中,我们可以使用scikit-learn库来实现高斯混合模型算法。下面将详细介绍如何使用Python实现高斯混合模型算法,并附上相应的源代码。
首先,我们需要导入必要的库和模块:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture
接下来,我们可以生成一些用于演示的数据。假设我们有两个聚类,每个聚类包含两个特征。我们可以使用NumPy库的随机函数生成符合高斯分布的数据:
np