算法原理
希尔排序(Shell Sort)是希尔在1959年发明的,第一个突破O(n2)的排序算法,是简单插入排序的改进版。但希尔排序是非稳定的排序算法。希尔排序又叫做缩小增量排序
。
希尔排序是基于插入排序的两点性质而提出改进方法的:
- 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。
- 插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位。
希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序
。
算法描述
先将整个待排序得记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述为:
- 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
- 按增量序列个数k,对序列进行k趟排序;
- 每趟排序,根据对应的增量i,将待排序列分割成若干长度为m的子序列,分别对各子表进行直接插入排序。当增量因子为1时,整个序列作为一个表来处理,表长度即为整个序列的长度。
动图展示
注:动图来源于网络
算法实现
/**
* 希尔排序(缩小增量排序)
*/
public class ShellSort {
public static void main(String[] args) {
int[] arr = {3,44,38,5,47,15,36,26,27,2,46,4,19,50,48};
arr = shellSort(arr);
printArray(arr);
}
public static void printArray(int[] arr){
for(int a : arr)
System.out.print(a+",");
System.out.println();
}
public static int[] shellSort(int[] arr){
// Math.floor() 向下取整函数
for(int gap = (int) Math.floor(arr.length/2); gap>0; gap = (int) Math.floor(gap/2)){ // 分组
// 执行插入排序
for(int i=gap; i<arr.length; i++){
int j=i;
int current = arr[i];
while(j-gap >= 0 && arr[j-gap] > current){
arr[j] = arr[j-gap];
j=j-gap;
}
arr[j] = current;
}
}
return arr;
}
}