奇异值分解(SVD)原理详解-潜在语义分析-协同过滤-SVD++-PCA

本文围绕SVD在协同过滤推荐算法中的应用展开,介绍了SVD、user - based、item - based协同过滤推荐的联系与区别,还提及SVD与basline model、SVD++的关系。阐述了SVD在协同过滤中的应用方法,以及SVD矩阵可用于数据压缩,还探讨了pca和svd的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

############
SVD、user-based、item-based协同过滤推荐之间的联系与区别
【这篇文章也写的很好,包括basline model->SVD->SVD++】
############
SVD和basline model和SVD++

使用SVD++进行协同过滤(算法原理部分主要引用自他人)
在这里插入图片描述


https://blog.csdn.net/xiaocong1990/article/details/54909126

LSI:潜在语义分析(潜在:分解出来的潜在向量
感觉潜在向量 ≈ 词向量,都是把稀疏矩阵->稠密向量,用稠密向量来代表潜在特征/含义。
在这里插入图片描述
这个词文档矩阵经过SVD分解:
在这里插入图片描述
结果:
在这里插入图片描述
其在协同过滤中的具体应用方法是先对user_movie的rating矩阵的缺失值用随机数据予以填充,然后将预处理之后的矩阵作为SVD算法的输入,进行迭代求解。


如何理解pca和svd的关系?
奇异值分解 SVD 的数学解释(计算例子)
超级通俗易懂的奇异值分解(SVD)讲解
奇异值分解及几何意义

#############
!!!Python学习笔记(四)——基于SVD的协同过滤(推荐算法),这个讲的很好,包括LSI和SVD协同过滤:
############在这里插入图片描述
也就是说,SVD的左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩。


机器学习_用PCA主成分分析给数据降维

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值