【GEO实战】谁来完成 Embedding 工作?

谁来完成 Embedding 工作?

Embedding 的生成与管理,通常由 技术类岗位来执行,但具体分成三类:

角色职责是否必须配备
向量数据工程师(Vector Data Engineer)把企业内容(文本、图片、视频等)分块、生成向量、存入向量数据库,并优化检索效率中大型企业必须,尤其是需要自建知识库的
机器学习工程师(ML Engineer)选择/微调合适的 embedding 模型(如 OpenAI、BGE、Sentence-BERT),保证语义匹配准确性技术要求高的场景必需
数据运营/内容结构化人员与技术人员协作,把内容改成可向量化的格式,并做元数据标注所有做 GEO 的企业都建议配备

2. 需要什么技能?

不同角色技能要求不一样,但核心能力包括:

(1)技术类

  • 熟悉向量数据库(Milvus、Pinecone、Weaviate 等)

  • 会使用嵌入模型 API(OpenAI Embeddings、BGE、LaBSE 等)

  • 掌握分块(chunking)策略,提升长文召回率

  • 了解多模态向量(图像、视频、音频向量化)

(2)数据/内容类

  • 懂结构化内容标注(Schema.org、JSON-LD)

  • 会设计标签体系(元数据)提升检索精度

  • 了解领域知识,保证向量化内容的上下文准确性


3. 什么样的企业需要这种服务?

主要是 内容依赖型知识密集型、或 需要 AI 作为主要流量入口 的企业:

  • B2B 企业(技术方案、工业制造、软件服务)

  • 金融行业(合规说明、产品说明书)

  • 医疗健康(医学知识库、疾病解答)

  • 教育培训(课程内容、教学问答)

  • 品牌方(需要长期维护品牌话语权)

一个简单判断标准
如果你的业务需要 AI 在回答中“引用你”才能让用户找到你,那你就需要做 embedding 和向量化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白雪讲堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值