谁来完成 Embedding 工作?
Embedding 的生成与管理,通常由 技术类岗位来执行,但具体分成三类:
角色 | 职责 | 是否必须配备 |
---|---|---|
向量数据工程师(Vector Data Engineer) | 把企业内容(文本、图片、视频等)分块、生成向量、存入向量数据库,并优化检索效率 | 中大型企业必须,尤其是需要自建知识库的 |
机器学习工程师(ML Engineer) | 选择/微调合适的 embedding 模型(如 OpenAI、BGE、Sentence-BERT),保证语义匹配准确性 | 技术要求高的场景必需 |
数据运营/内容结构化人员 | 与技术人员协作,把内容改成可向量化的格式,并做元数据标注 | 所有做 GEO 的企业都建议配备 |
2. 需要什么技能?
不同角色技能要求不一样,但核心能力包括:
(1)技术类
-
熟悉向量数据库(Milvus、Pinecone、Weaviate 等)
-
会使用嵌入模型 API(OpenAI Embeddings、BGE、LaBSE 等)
-
掌握分块(chunking)策略,提升长文召回率
-
了解多模态向量(图像、视频、音频向量化)
(2)数据/内容类
-
懂结构化内容标注(Schema.org、JSON-LD)
-
会设计标签体系(元数据)提升检索精度
-
了解领域知识,保证向量化内容的上下文准确性
3. 什么样的企业需要这种服务?
主要是 内容依赖型、知识密集型、或 需要 AI 作为主要流量入口 的企业:
-
B2B 企业(技术方案、工业制造、软件服务)
-
金融行业(合规说明、产品说明书)
-
医疗健康(医学知识库、疾病解答)
-
教育培训(课程内容、教学问答)
-
品牌方(需要长期维护品牌话语权)
一个简单判断标准:
如果你的业务需要 AI 在回答中“引用你”才能让用户找到你,那你就需要做 embedding 和向量化。