AI大模型落地-巨量实体关系映射

实体关系映射是目前AI落地非常成熟的应用场景,但是如何做到多、快、好、省,仍然需要一些技巧,这里文分享一下我的方案。

什么是实体关系映射

实体匹配(entity mapping)通常是指将两个没有直接关系的对象,通过一些方式建立起映射关系。比如:故宫、故宫博物院、北京故宫 三者指的是同一景区,将三者关联起来,就属于实体关系映射。

场景

现在A库有1w景区数据,B库有100w级别景区数据。需要从B库中挑选出与A库匹配的景区。他们的数据情况如下图。

A库 B库
名称
城市
地址 可能空
简述 可能空 可能空

方案

我认为如果能简单通过规则来确定的,尽量通过规则来处理,当需要逻辑推理时再让AI接入,同时需要多名AI交叉比对,多个角色校验结果,尽量减少AI犯错的可能性。这里我先把流程图贴出,后续我将对每个环节进行具体介绍。

不完全匹配

BM25得分最高的N个景区

景区名称&城市匹配

多个LLM判断出最相似的景区

LLM结果相同

failed

pass

结果可能有争议

B景区数据库

rule1

A数据库某景区

rule2:BM25

LLM_best_match*2

LLM_final_check

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值