聊天机器人(Chatbot)是经由对话或文字进行交谈的计算机程序。其能够模拟人类对话,通过图灵测试。自1966年来人类从未停止过对聊天机器人的探索。现如今,苹果语音助手Siri,微软的小冰、小娜、Rinna、Tay、Zo、Ruk kkuh,亚马逊的Echo,百度的小度机器人,京东JIMI客服机器人,网易七鱼等Chatbot纷纷进驻到生活的各个领域,改变着我们的生活。
历史发展脉络
- 1966 年,MIT 的计算机科学家 Joseph Weizenbaum 发表了 ELIZA,它可以根据人工设计的脚本与人类交流,是世界上第一个模仿人类谈话的机器人;
- 1971年, 斯坦福大学的Kenneth Colby开发出Parry聊天机器人,它模仿偏执狂患者,这是第一个通过图灵测试的聊天机器人;
- 1988 年,加州大学伯克利分校的 Robert Wilensky 等人开发了名为 UNIX Consultant 的聊天机器人系统;
- 1990 年,美国人 Hugh Loebner 设立 Loebner Prize,奖励首个与人类回复无差别的计算机程序,即聊天机器人系统;
- 1995 年,Richard Wallace 博士开发的ALICE 系统允许用户自定义自己的聊天机器人,被认为是20世纪最伟大的聊天机器人。ALICE在 2000、2001 和 2004 年三次斩获勒布纳人工智能奖(Loebner Prize),该奖项颁发给最像人类的系统;
- 2001 年,SmarterChild 在短信和即时信息中广泛流行,聊天机器人第一次被应用在即时通信领域;
- 2006 年,IBM Watson 能够用自然语言回答问题;
- 2010 年,苹果语音助手 Siri 诞生;
- 之后,全球各大公司开始推出 Chatbots 平台或开源架构。
必读论文推荐
1. Dialog State Tracking: A Neural Reading Comprehension Approach
作者:Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagyoung Chung, Dilek Hakkani-Tur
对话状态追踪用于在给定所有先前对话的情况下估计当前的对话状态。机器阅读理解则侧重于构建系统,以读取文本段落并回答基于段落理解的问题。本篇论文将对话状态追踪转化为一项机器阅读理解任务,以基于上下文回答当前的对话状态是什么这一问题。传统的状态跟踪方法通常将对话状态预测为本体中所有可能的槽值在封闭集合上的分布,而本文使用简单的基于注意力的神经网络来指向对话中的槽值。
2. Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations
作者:Karthik Gopalakrishnan, Behnam Hedayatnia, Qinlang Chen, Anna Gottardi, Sanjeev Kwatra, Anu Venkatesh, Raefer Gabriel, Dilek Hakkani-Tür
发表:Interspeech Conference
建立可以与人类进行深层次、开放性对话的社交机器人,是人工智能领域的重大挑战之一。Amazon团队开发的Topical-Chat是一个基于知识的人-人之间开放领域对话数据集(Knowledge-Grounded Open-Domain Conversations)。其中的基础知识涵盖8个广泛的主题,并且对话伙伴没有明确定义的角色,有助于对开放域对话式AI的进一步研究。本文还在Topical-Chat上训练了几种最新的编码器-解码器对话模型,并使用自动和人工评估以进行基准测试。
3. MoEL: Mixture of Empathetic Listeners
作者:Zhaojiang Lin, Andrea Madotto, Jamin Shin, Peng Xu, Pascale Fung
以往对移情对话系统的研究主要关注在特定情绪下产生的反应。但是,产生共情不仅需要具备生成情绪反应的能力,更需要理解用户的情绪并适当地予以回复。本篇论文提出全新的基于端到端(End-to-End)在对话系统中建立移情模型的方法:移情听众的混合物(MoEL)。这一模型首先捕获用户的情绪并输出情绪分布。基于此,MoEL将结合优化后的侦听器的对某些情绪做出的反应,从而产生移情。
4. Ethical Challenges in Data-Driven Dialogue Systems
作者:Peter Henderson, Koustuv