AI Agent 的核心引擎:六种典型工作流模式解析(建议收藏)

2025年AI最大关键字无疑是:智能体(Agent)

从医疗领域的「全病程智能诊疗助手」,到工业场景的「产线动态调度 Agent」;从政务大厅的「多业务协同办理终端」,到消费端的「跨平台智能客服中枢」,几乎每个展台的演示都在诠释一个趋势:

智能体正从“能对话的工具”,进化为“会协作、能决策的系统”。

从工具到系统:智能体面临新挑战

随着落地需求的快速增长,智能体面临一系列新课题:

  • 如何处理多阶段任务,不被 prompt 卡死?
  • 如何组合多模型、多工具、多个角色,稳定协作?
  • 如何在流程中进行反馈优化、失败回滚、动态规划?

这背后涉及的,不是 LLM 的提示技巧,而是系统设计能力。

✅答案藏在「工作流设计模式」中。

六大智能体工作流模式(+典型场景 + 深度分析)

以下是六类典型的智能体工作流模式,可帮助构建高鲁棒性、可复用的 Agent 系统架构:


① 链式工作流(Chain Workflow):线性拆解,步步为营

设计逻辑: 将复杂任务拆解为线性步骤,每步输出作为下一步输入。

适用场景:

  • 内容生成流程(如自动写作、周报生成)
  • 标准审批流程(如单据流转、任务签核)

案例: 金融行业报告生成平台

  • 意图识别:解析用户查询
  • 数据检索:抓取数据库内容
  • 内容生成:模板化填充
  • 格式校验:结构化验证与润色

优点: 简洁明晰,易于调试与部署

缺点: 缺乏灵活性,不适合复杂分支任务


② 路由式工作流(Routing Workflow):动态分流,精准处理

设计逻辑: 设定决策点,根据条件将任务分派到不同处理路径。

适用场景:

  • 多意图对话系统(如智能客服)
  • 多入口业务分流(如用户中心服务系统)

案例: 电商平台客服机器人

  • 意图判断:基于模型或关键词分类
  • 路由执行:对应标准处理路径
  • 汇总回复:统一输出交互结果

优势: 提高响应匹配度,降低冗余计算

风险点: 决策规则需持续训练或维护

③ 评估优化式(Evaluator-Optimizer):闭环迭代,持续精进

设计逻辑: 设置评估器对中间结果评分,结果不达标时重试或提示人工介入。

适用场景:

  • 自动内容生成 + 质量审核
  • 代码生成 + 安全与合规检测

案例: LLM 编程助手

  • 生成初版代码
  • 静态分析与语义验证
  • 优化建议反馈后二次生成

关键点:

  • 评估指标设置科学性决定输出质量
  • 支持“部分重试”是降低算力开销的关键

④ 并行式工作流(Parallel Workflow):分而治之,效率倍增

设计逻辑: 将任务切分为多个独立子任务并行处理,最终聚合输出。

适用场景:

  • 多模态任务(如图文理解、语音转写分析)
  • 高并发数据处理(如大模型微调训练、多源数据清洗)

案例: 金融实时风控系统

  • 不同金融产品并行监控
  • 各自策略引擎输出风险评分
  • 汇总呈现全局风险指数

技术挑战: 并行任务调度 + 结果合并逻辑的幂等性保障

⑤ 规划式工作流(Planning Pattern):动态构图,灵活应变

设计逻辑: 像人类项目经理一样,根据目标与环境动态生成任务结构。

适用场景:

  • 长周期项目执行(产品开发、市场推广)
  • 多团队协作场景

案例: 智能产品经理助手

  • 任务规划:基于目标自动拆解阶段性子任务
  • 工具调度:为每类子任务匹配最优执行手段
  • 过程监控:执行中动态调整节奏和资源

关键能力:

  • 子任务结构化建模
  • 异常处理与回退策略设计

⑥ 协作式工作流(Collaborative Workflow):分工协同,优势互补

设计逻辑: 多个智能体各司其职,通过标准协议协同作业,构成 Agent 团队。

适用场景:

  • 涉及多专业角色协作的任务(如法律咨询、保险定损)
  • 高度流程化但又需验证闭环的系统(如银行合规审批)

案例: 银行客户服务中心的智能 Agent 网络

  • 协调 Agent:分发任务、整合回复
  • 执行 Agent:负责调用系统、生成内容
  • 验证 Agent:检查合规性与准确性

协同关键: 信息共享机制、异常通知机制、上下文保持能力

模式组合的实践:不是“选一个”,而是“搭积木”

真实场景中,工作流模式往往是混合使用的:

  • 路由式 + 协作式:复杂对话系统根据用户类型调用多角色 Agent
  • 链式 + 评估优化式:内容生成每步都经过质检闭环
  • 规划式 + 并行式:任务树结构中叶节点并行处理

✅模式本质上是模块化设计,帮助你构建可重用、可观测、可扩展的系统智能体。

六种工作流模式简表

图片

趋势判断:从“规则驱动”迈向“模型驱动”

当大模型能力逐步内嵌于智能体核心,工作流的本质也将从“预设流程”演化为“智能调度”体系:

  • LLM 生成任务树结构(Planning by Language)

  • 模型驱动流程选择(Routing by reasoning)

  • 模型自主评估与自优化(Auto-Reflexion)

✅最终走向:工作流即智能体的“控制大脑”,而非配角。

行动建议

从一个模式入手,搭建你第一个可落地系统智能体;

为团队积累可复用的模块(评估器、路由器、API 调用组件等);

建立“工作流即知识”的方法库,做组织级迁移学习。

✅当你构建的不只是一个 Agent,而是一个会思考的系统,工作流设计,就是你的智能底盘。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值