UVA 437_The Tower of Babylon

本文介绍了一种使用DAG最长路算法解决石头叠放问题的方法,目标是在满足特定尺寸约束的情况下,计算出石头能叠放的最高高度。通过详细解析算法思路与代码实现,展示了如何构建DAG并进行记忆化搜索,最终求得最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

一堆石头,给定长宽高,每种石头均可以使用无数次,问这堆石头可以叠放的最高高度,要求下面的石头的长和宽分别严格大于上面石头的长和宽。

分析:

采用DAG最长路算法,由于长宽较大,不能直接用于表示状态,因此采用d[i][x]表示以第i块石头为最高点,以其第x个边为高所能达到的最大高度,其中i为石头标号,x代表长/宽/高,然后根据长宽高要求构造DAG,最后记忆化搜索求出最长路。

代码:

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int maxn = 0, ans = 0, n;
int y[35][4];
int G[35][4][35][4];
const int INF = 0x3fffffff;
int a[2],b[2], d[35][4];
int getDAG(int i, int k, int j, int m)
{
    if(k==1) a[0] = y[i][2], a[1] = y[i][3];
    else if(k==2) a[0] = y[i][3], a[1] = y[i][1];
    else a[0] = y[i][2], a[1] = y[i][1];

    if(m==1) b[0] = y[j][2], b[1] = y[j][3];
    else if(m==2) b[0] = y[j][3], b[1] = y[j][1];
    else b[0] = y[j][2], b[1] = y[j][1];

    sort(a,a+2);
    sort(b,b+2);

    return (a[0]>b[0]&&a[1]>b[1])?1:0;

}
int dp(int i, int k)
{
    int& ans = d[i][k];
    if(ans > 0) return ans;
    for(int j = 0; j < n; j++){
        for(int m = 1; m <= 3; m++){
            if(getDAG(j,m,i,k))  ans = max(ans, dp(j, m));
        }
    }
    ans += y[i][k];
    return ans;
}
int main (void)
{
    int a, b, c;
    cin>>n;
    int cnt = 1;
    while(n){
        maxn = 0;
        memset(d,0,sizeof(d));
        memset(G,0,sizeof(G));
        for(int i = 0; i < n; i++){
            cin>>a>>b>>c;
            y[i][1] = a; y[i][2] = b; y[i][3] = c;
        }
        for(int i = 0; i < n; i++)
                for(int k = 1; k <= 3; k++)
                    for(int j = 0; j < n; j++)
                        for(int m = 1; m <= 3; m++)
                                getDAG(i,k,j,m);

        for(int i = 0; i < n; i++)
            for(int k = 1; k <= 3; k++)
                maxn = max(maxn,dp(i, k));

        cout<<"Case "<<cnt<<": maximum height = "<<maxn<<endl;
        cin>>n;
        cnt++;
 }
}

很白痴的细节问题纠结了一下午,还是要细心!细心!

转载于:https://www.cnblogs.com/Tuesdayzz/p/5758848.html

CH341A编程器是一款广泛应用的通用编程设备,尤其在电子工程和嵌入式系统开发领域中,它被用来烧录各种类型的微控制器、存储器和其他IC芯片。这款编程器的最新版本为1.3,它的一个显著特点是增加了对25Q256等32M芯片的支持。 25Q256是一种串行EEPROM(电可擦可编程只读存储器)芯片,通常用于存储程序代码、配置数据或其他非易失性信息。32M在这里指的是存储容量,即该芯片可以存储32兆位(Mbit)的数据,换算成字节数就是4MB。这种大容量的存储器在许多嵌入式系统中都有应用,例如汽车电子、工业控制、消费电子设备等。 CH341A编程器的1.3版更新,意味着它可以与更多的芯片型号兼容,特别是针对32M容量的芯片进行了优化,提高了编程效率和稳定性。26系列芯片通常指的是Microchip公司的25系列SPI(串行外围接口)EEPROM产品线,这些芯片广泛应用于各种需要小体积、低功耗和非易失性存储的应用场景。 全功能版的CH341A编程器不仅支持25Q256,还支持其他大容量芯片,这意味着它具有广泛的兼容性,能够满足不同项目的需求。这包括但不限于微控制器、EPROM、EEPROM、闪存、逻辑门电路等多种类型芯片的编程。 使用CH341A编程器进行编程操作时,首先需要将设备通过USB连接到计算机,然后安装相应的驱动程序和编程软件。在本例中,压缩包中的"CH341A_1.30"很可能是编程软件的安装程序。安装后,用户可以通过软件界面选择需要编程的芯片类型,加载待烧录的固件或数据,然后执行编程操作。编程过程中需要注意的是,确保正确设置芯片的电压、时钟频率等参数,以防止损坏芯片。 CH341A编程器1.3版是面向电子爱好者和专业工程师的一款实用工具,其强大的兼容性和易用性使其在众多编程器中脱颖而出。对于需要处理25Q256等32M芯片的项目,或者26系列芯片的编程工作,CH341A编程器是理想的选择。通过持续的软件更新和升级,它保持了与现代电子技术同步,确保用户能方便地对各种芯片进行编程和调试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值