用Floyd算法求解下图各个顶点的最短距离

本文深入讲解了Floyd算法,一种用于解决所有点对最短路径问题的经典算法。文章提供了算法的详细步骤,包括初始化、迭代过程及最终结果的获取,并附上了C语言实现的源代码。同时,分析了算法的时间复杂度和空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 问题

在这里插入图片描述

2.解析

Floyd算法:
设顶点集为v,边集为u
初始化:D[u,v]=A[u,v]
For k:=1 to n
For i:=1 to n
For j:=1 to n
If D[i,j]>D[i,k]+D[k,j] Then
D[i,j]:=D[i,k]+D[k,j];
c) 算法结束:D即为所有点对的最短距离矩阵

3.设计

Floyd算法:

#include<stdio.h>
#include<stdlib.h>
#define max 1000000000

int d[1000][1000], path[1000][1000];
int main()
{
    int i, j, k, m, n;
    int x, y, z;
    scanf_s("%d%d", &n, &m);         //输入点和边数

    for (i = 1; i <= n; i++)
        for (j = 1; j <= n; j++) {
            d[i][j] = max;
            path[i][j] = j;
        }

    for (i = 1; i <= m; i++) {
        scanf_s("%d%d%d", &x, &y, &z);       //输入每两个点之间的带权路径
        d[x][y] = z;
        d[y][x] = z;
    }

    for (k = 1; k <= n; k++)
        for (i = 1; i <= n; i++)
            for (j = 1; j <= n; j++) {
                if (d[i][k] + d[k][j] < d[i][j]) {
                    d[i][j] = d[i][k] + d[k][j];
                    path[i][j] = path[i][k];
                }
            }
    for (i = 1; i <= n; i++)
        for (j = 1; j <= i; j++)
            if (i != j) printf("%d->%d:%d\n", i, j, d[i][j]);
    int f, en;
    scanf_s("%d%d", &f, &en);                 //输入想求路径的两个端点
    while (f != en) {
        printf("%d->", f);
        f = path[f][en];
    }
    printf("%d\n", en);
return 0;

4.分析

Floyd算法:
时间复杂度:O(n^3);
空间复杂度:O(n^2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值