【AI大模型】智能化时代:没有大模型不行,只有大模型也不行

前言

为什么行业似乎对大模型的技术进步“脱敏”了?

曾经一段时间,海外OpenAI、Google、Meta、Anthropic等厂商,国内华为、百度、阿里、字节跳动等厂商,轮番发布新的基座模型并刷屏现象级热度,参数比拼成了主旋律,仿佛大模型之“大”,可以摧枯拉朽解决一切问题。

现在行业集体则显得理智了许多,并不是大模型技术没有突破了,而是大模型炫目的演示,如果不能转化为产业场景中的实际可用,即便是OpenAI连续12天的发布会,除了o3带来一点惊喜,大家只会觉得兴趣乏乏。

很多人没注意到,OpenAI在秀技术的同时,将重点放在产品形态、合作生态和落地建设上,这对于国内大模型是个好消息,毕竟国内厂商一向注重落地,以卷应用和卷工程为先,OpenAI的动作说明方向大致正确。

大模型技术当然很重要,这是业界的共识,没有大模型就没有先进生产力,但更多企业开始认识到,只有大模型无法形成智能时代的生产关系,千行百业的智能化是复杂难题,需要长远且系统化的思维和能力体系,超出技术本身的范畴。

*大模型落地趋势:技术纵向优化,生态横向扩张*

在上一个技术革命周期,中国互联网生态的繁荣,在于上层应用的百花齐放,底层技术其实并没有太多本质突破,中国玩家们能够开发出互联网的新玩法,甚至比大洋彼岸的互联网源发地更富有想象力。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!在这里插入图片描述

到了大模型时代,周遭复杂的产业内外部环境提出了新的挑战,一个最直观的体现是,日前中国互联网协会、中国半导体行业协会、中国汽车工业协会、中国通信企业协会齐齐发声,警示行业用户采取措施,对“不再可靠、不再安全”的芯片审慎选择采购。

今时不同往日,大模型不是孤立存在的技术栈,中国企业不得不向底层根技术求索,在AI框架、操作系统、芯片等方面补全版图。尤其在大模型行业的落地初期,纵向优化是兼顾效率、成本等可操作性最高的方式,不同的软硬件深度协同,云平台是最适合承载的角色。

图片

这也是为何,无论国内还是国外,云厂商都成为生成式AI产业的主导力量,以简单的算力、算法和数据要素论,云厂商有大规模且经济的算力,并且可汇聚海量数据,通过云生态连接着产业上下游伙伴,能够把不同算法融入到企业真实场景中。因此,云平台成为了AI产业生长最合适的黑土地。

不少企业都开始认识到了技术纵向优化的重要性,也纷纷用云来承载大模型的创新创业,打造了一些样板场景。但是,随之而来一个更严峻的问题是,企业容易忽略经营的核心本质,做大模型是为了企业的智能化转型,技术是企业经营的必要不充分条件。

一位科技公司创始人曾表示,技术从来不是护城河,企业沉淀的应该是品牌、是客户关系、是行业标准、是生态,那些才是真正的护城河。当然它自身的护城河,肯定是打造一个强大的,能够去建设这样护城河的组织。

近期一家大模型独角兽CEO也提到,技术带来的领先窗口非常短暂,一旦巨头看到验证了TC-PMF(技术成本×产品市场契合度),他们会有很多方法超越,最终胜出的应用不只需要有技术优势,还需要在时间窗口内打造持续优势,比如品牌优势、社交链、用户数据、用户黏性等。

历次技术革命都不缺少原创新,发明集成电路的仙童半导体,开发JAVA语言的太阳微系统公司,发明数码技术的柯达,推出全球第一款商用手机的摩托罗拉。他们都曾手握技术霸权,两相对比,如今的企业在研究技术的同时,也应该关注管理、品牌、生态等经营环节。

和互联网一样,大模型只是一种技术手段,企业要通向智能化时代,会面临很多非技术难题,有时候成败就取决于认知,如何横向扩张企业的生态能力,值得企业格外重视。

*先享受大模型红利的企业,做对了什么*

过去一年,一批大模型先进企业涌现出来,他们要么通过大模型降本增效,要么创造出了新的产品和新的业务模式,或者是改进用户体验、优化工作流程、提升员工生产力。互联网、汽车、零售和医疗等行业,是大模型落地的先锋领域。

图片

**移动游戏是互联网热门赛道之一,**网易雷火今年推出的现象级产品永劫无间,在游戏运营探索生成式AI落地,推出了AI Copilot功能,能够同时处理文字、语音、图像等多模态信息,在游戏对战和闲聊中提供与真人“组队”相近的交互体验。

这款当下仍在手游周榜上迅猛蹿升的产品,无疑初步验证了全新运营工具提高用户粘性与付费意愿的效果,而这一切无需巨额硬件投资和建设周期,华为云提供了充足的计算资源和完善的工具链支撑。

此外,华为鸿蒙操作系统、终端云生态等能力,也可满足游戏行业的增强体验、广告营销等需求。据华为官网数据显示,互联网领域90%以上的中国互联网企业都选择了华为云。

在汽车行业,智能化是车企竞争的焦点,自动驾驶是智能汽车的核心,一批车企选择华为云打造自己的自动驾驶能力。华为云打磨的一站式自动驾驶云服务八爪鱼,已帮助一汽、东风、长安等企业在1周内交付之前6个月才能搭建完成的研发平台;与此同时,华为云基于多个实战项目积累,可以为车企提供20万+仿真场景库,加速客户仿真业务进程。

华为云盘古汽车大模型涵盖数据传输、数据预处理、数据标注、模型训练、仿真测试、实车测试全流程的完整工具链,海量真实数据标注和各种复杂场量Corner Case的仿真生成周期都得以大幅缩短,预集成的场景库和200多项测评指标体系,则能够帮助车企系统高效完成算法评估,进一步加速端到端智驾落地。

对于内卷的汽车行业,时间就是金钱,效率就是“生死线”,能否善用AI技术,可能就是“先进”与“先烈”的差别。目前95%的Top30车企选择华为云,很大程度上是为了博得未来的入场券。据悉,华为云连续三年中国汽车云市场份额第一,车联网云服务和自动驾驶云服务第一。

在医疗行业,创新药研发拥抱AI俨然已成必选项,一家国内顶级生物科技公司专家感慨,其公司大模型开发部署饱受技术问题困扰,从异构算力集成到CUDA代码迁移,在兑现AI4S愿景之前,已经为搭建基础研发平台消耗大量资源,而刚刚跑通技术问题后,原定的国产GPU初创企业却又面临流片困境。

不少药企选择与华为云携手,盘古大模型在药物研发领域具有显著的实践成果,盘古药物分子大模型全新升级,增加了包括靶点口袋发现、分子对接等在内的十大AI制药核心场景,利用海量数据,通过自监督学习减少标注数据需求,将药物研发效率提升33%,优化后的分子结合能提升40%以上,实现药物早研阶段的全流程加速,正在助力中国药企突破创新药从研发到上市,平均成本超过10亿美元、研发周期大于10年的医药界公认“双10定律”。

而在整个医药健康产业生态中,云南白药、哈药集团、天士力等500+医药企业选择华为云,AI正在重构场景、流程、组织乃至商业模式。

以天士力和华为云共同开发的“数智本草”中医药大模型为例,整合了海量的数据资源,包括古医书、经典方剂、现代中成药配方、学术文献、天然化合物数据库、临床试验方案以及中药专利等。通过智能问答、交互计算和报告生成三种方式,该模型为从中药机制解析到中药复方及组分创新开发的全过程提供研发支持。

在零售行业,零售业商家们对毛利率“锱铢必较”,普遍选择通过“云底座”解决智能化转型的技术、经验和资源需求,中国领先的零售企业80%选择华为云做智能化伙伴。

作为羽绒服行业的领军企业,波司登在数字化转型过程中也在大力拥抱AI,在华为云的帮助下,通过AI能力达成门店的销量预测,对于几百款+上千色+上万码的服饰,可以轻松简单的分配到不同的门店,从而优化生产计划、提高库存周转率以及智能补货。

先享受大模型红利的企业,首先在认知上就快人一步,他们很多本就是所处行业得佼佼者们,但后进企业也不必忧心,行业领先厂商就是抓住了新的技术和产业变革,才一步步成为行业先进,大模型提供了前所未有的机会窗口,站上AI的潮头,大概率就走上了通向“先进”的道路。

*华为云:理解大模型,跳出大模型*

如果观察这些智能化先进企业的实践,他们存在一些共性,大模型技术的引入是结果,华为云提供了纵向优化的技术能力,以鲲鹏、昇腾、鸿蒙、盘古为标志的高可靠、高可用的软硬件技术基座,通过云服务的形式对外输出,让先进企业能够率先解决大模型技术难题。

譬如,华为云通过昇腾云服务支持好百模千态,华为云整合了云化算力、模型开放、模型托管到生态系统的全方位服务,千亿参数模型在昇腾云上训练,可以支持40天无中断,平均故障恢复时间小于10分钟,昇腾云服务已经全面适配行业主流的超过100多个开源及闭源大模型,为百模千态的发展提供了强劲动力。

图片

盘古大模型已经落地到矿山、电力、气象、医药等多个行业,400多个模型的应用场景,为企业解难题、做难事。近日,国际权威分析机构沙利文(Frost & Sullivan)发布的《中国行业大模型市场报告2024》报告显示,在大模型领域中,华为云取得七项领先,位居医疗、药物、气象以及汽车4个领导者象限;《2024年中国行业云公有云市场报告》中显示,华为云在多个行业表现卓越,获得文娱社交和汽车公有云整体市场第一,文娱社交AIGC内容创新、音视频行业、车联网和自动驾驶四个细分领域市场第一,并在金融公有云和游戏公有云两个市场增速第一。

放到更广的视野观察,智能化时代,全球经济、技术、生态等环境发生巨变,千行万业需要在不确定的未来找到确定性,华为云不只解决了技术难题,也在不断与深入行业做难事。此外,华为自身的数字化实践经验,全球生态和资源等,都是企业生长难得的养料,这是单纯技术服务商给不了的能力。

可以说,华为云是在理解大模型的基础上跳出大模型本身,既解决大模型纵向技术整合的落地难题,又为企业的智能化转型长远谋划。

华为将30多年在ICT领域的技术积累、产品解决方案,以及在自身数字化转型中沉淀的经验、方法、技术和工具,以云服务的形式开放给客户,逐步帮助企业进行数字化转型。

企业还可以站在华为的肩膀上走向全球,例如今年华为云发布了新的伙伴能力计划,从产品技术、场景服务、行业经验三个方向来加速伙伴能力成长,目前华为全球开发者已经超过1100万,其中华为云在全球已拥有超过760万开发者,汇聚了4.5万伙伴,联合构建了500多个行业解决方案,12000多款云商店的商品。华为云不断完善的生态体系,可助力企业能力提升与商业成功。

智能化时代,没有大模型不行,只有大模型也不行。企业将会愈发清楚的认识到,智能化不仅需要能解决技术难题的云+AI,更需要能够带来商业和品牌等多方面提升的后盾,如此才能真正走向确定的智能化未来。

🌟什么是AI大模型


AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。

这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理*、图像识别、*语音识别等。

图片

🛠️ 为什么要学AI大模型


目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

🌰大模型岗位需求


大模型时代,企业对人才的需求变了,AI相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

图片

💡掌握大模型技术你还能拥有更多可能性:


• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

🚀如何学习AI 大模型


由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的课程资料免费分享,需要的同学扫码领取!

在这里插入图片描述

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我帮你准备了详细的学习成长路线图&学习规划。大家跟着这个大的方向学习准没问题。如果你真心想要学AI大型模型,请认真看完这一篇干货!

图片

👉2.AI大模型教学视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩**(文末免费领取)**

图片

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(文末免费领取)

图片

👉4.LLM大模型开源教程👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末免费领取)

图片

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。 (文末免费领取)

图片

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(文末免费领取)

图片

🏅学会后的收获:


  • 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
  • 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
  • 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
  • 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的大模型 AI 学习资料已经整理好,朋友们如果需要可以微信扫描下方我的二维码免费领取

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值