逻辑回归

本文介绍了逻辑回归的损失函数,包括均值平方差和交叉熵,并指出在分类问题中交叉熵更适合。接着,文章详细推导了逻辑回归的sigmoid函数、概率模型、损失函数J(θ)以及梯度下降算法更新θ的步骤,阐述了如何通过梯度下降找到损失函数的最小值来优化模型参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归推导

我们在讲逻辑回归推导前,先给大家介绍下损失函数

损失函数用于描述模型预测值与真实值的差距大小。一般对于回归问题的算法有—均值平方差(MSE)和交叉熵。

1、均值平方差

均值平方差(Mean Squared Error,MSE),也称“均方误差”,在神经网络中主要是表达预测值和真实值之间的差异,在数理统计中,均方误差是指参数估计值与参数真值之差平方的预期值。

2、交叉熵

交叉熵(crossentropy)也是loss算法的一种,一般用在分类问题上,表达意思为预测输入样本属于哪一类的概率。其表达式如下,其中y代表真实值分类(0或1), a代表预测值。

二分类情况下的公式:
C=−1m∑i=1m[yln(ai)+(1−y)ln(1−ai)] C=-\frac{1}{m}\sum_{i=1}^{m}[{yln(a_{i}})+({1-y)ln(1-a_{i}})] C=m1i=1m[yln(ai)+(1y)ln(1ai)]
交叉熵也是值越小,代表预测结果越准。

3、损失算法的选取

损失函数的选取取决于输入标签数据的类型:

如果输入的实数、无界的值,损失函数使用均值平方差。

如果输入标签是位矢量(分类标志),使用交叉熵会更适合。

下面我们正式进入推导过程

假如我们得到线性回归如下:
f(x)=θ0+θ1x1+θ2x2+⋅⋅⋅+θnxn f(x)=\theta _{0}+\theta _{1}x_{1} +\theta _{2}x_{2}+\cdot \cdot \cdot +\theta _{n}x_{n} f(x)=θ0+θ1x1+θ2x2++θnxn
线性回归是拟合函数,给我们提供的是一个预测值,值的范围是(-∞,+∞),如果我们想知道分布概率,这时候我们可以引入sigmoid函数,将f(x)f(x)f(x)值 从(-∞,+∞)压缩到(0,1),

对线性可分样本,我们将f(x)f(x)f(x) 代入sigmoid函数,即可得到:
Z=11+e−x=11+e−f(x) Z=\frac{1}{1+e^{-x}}=\frac{1}{1+e^{-f(x)}} Z=1+ex1=1+ef(x)1
在这里插入图片描述
这是 若 f(x)=0 ,则Z=0.5,

​ 若f(x)>0 ,则Z>0.5,我们将Z>0.5,分为1类,令y=1,

​ 若f(x)<0 ,则Z<0.5,我们将Z<0.5,分为0类,令y=0,

这里我们令
h(x)=Z=11+e−f(x) h(x)=Z=\frac{1}{1+e^{-f(x)}} h(x)=Z=1+ef(x)1
这时我们可得到概率模型
P(xi)={ h(xi)ify=11−h(xi)ify=0 P(x_{i})=\left\{\begin{matrix} h(x_{i}) &if y=1 \\ 1-h(x_{i}) &if y=0 \end{matrix}\right. P(xi)={ h(xi)1h(xi)ify=1ify=0
我们进一步把两式整合
P(x)=(h(xi))yi∗(1−h(xi))1−yi P(x)=(h(x_{i}))^{y_{i}}*(1-h(x_{i}))^{1-y_{i}} P(x)=(h(xi))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值