numpy库
目录
一、数组
1、数组创建
2、数组属性
3、缺失值问题
4、特殊数组
5、np.random 模块
6、数组的排序
7、数组的重塑
8、索引和切片
9、数组的合并
10、数组的运算
二、np下面的通用函数
三、ndarry实例的常用方法
四、np.char模块下面的字符串函数
五、矩阵运算、协方差
六、np其他常用函数
一、数组
1、数组创建
import numpy as np
dir(np)
np.array([['张','男','19'],['李','女','20']],dtype='object')
np.arange(1,5,0.4)
np.arange(10,0,-1)
np.linspace(1,8,5)
np.linspace(1,8,5,endpoint=False)
np.typeDict
a=np.array([{1,2},{3,4},{5,6}],dtype="object")
2、数组属性
a.ndim
b.shape
a.size
b.dtype
a.itemsize
a.size * a.itemsize
3、缺失值问题
np.nan
a.dtype
np.array([1,2,None])
out[5]:
array([1, 2, None], dtype=object)
np.array(['1','2',np.nan])
np.isnan(a)
4、特殊数组
np.zeros((2,3))
np.ones((3,4))
np.eye(2)
np.diag([1,2,3,4])
np.empty((2,3))
5、np.random 模块
np.random.seed(100)
np.random.rand(3,4)
np.random.uniform(10,50,(4,3))
np.random.randn(3,4)
np.random.randint(10,30,(3,4))
np.random.choice(['张三','李四','王五'],10)
a= np.array([1,2,3])
np.random.shuffle(a)
a.cumsum()

6、数组的排序
np.argsort(a)
np.sort(a)
a.sort()
np.argsort(b,axis=0)
sorted(b,key=lambda x:x[1])
7、数组的重塑
np.arange(15).reshape(3,5)
np.arange(6).reshape(2,-1)
c.ravel()
np.tile(a,(3,3))
8、索引和切片
a[[0,2]]
a[1:3,1]
c[c[:,0]<0.5]
9、数组的合并
np.concatenate((a,a),axis=0)
np.concatenate((a,a),axis=1)
10、数组的运算
a+b
a*b
a = np.array([[0,0,0],
[1,1,1],
[2,2,2],
[3,3,3]])
b= np.array([1,2,3])
a+b
out[8]:
array([[1, 2, 3],
[2, 3, 4],
[3, 4, 5],
[4, 5, 6]])
a = np.array([[0,0,0],
[1,1,1],
[2,2,2],
[3,3,3]])
b=np.array([[1],[2],[3],[4]])
a+b
out[12]]:
array([[1, 1, 1],
[3, 3, 3],
[5, 5, 5],
[7, 7, 7]])
二、np下面的通用函数
np.add(a,b)
np.multiply(a,b)
np.maximum(a,b)
三、ndarry实例的常用方法
a.T
a.transpose(1,0)
a.astype('str')
a.tolist()
四、np.char模块下面的字符串函数
np.char.add(a,b)
np.char.upper(a)
d=np.char.split(a,sep=" ")
五、矩阵运算、协方差
a.dot(b)
a @ b
np.matmul(a,b)
np.inner(a,a)
np.dot(a,a.T)
np.linalg.det(a)
np.linalg.inv(a)
data1=np.random.rand(3,10)
np.cov(data1)
六、np其他常用函数
sum([1,2,3],5)
a = np.array([[1,2,3],
[3,4,5]])
np.sum(a,1)
sum(a,2)
np.max(a)
a.argmin(a)
np.max(a,0)
a.argmax(axis=0)
np.sum(a,axis=0,keepdims=True)
out[12]:
array([[4, 6, 8]])