密码学小知识(9):差分隐私(Differential Privacy)

差分隐私是一种严格的隐私保护技术,通过在查询结果中引入噪声,确保攻击者无法确定个体是否在数据集中。由Dwork在2006年提出,其核心是对于仅相差一条记录的两个数据集,执行相同查询的概率非常接近。差分隐私通过控制隐私预算(ε)来平衡信息泄露风险,ε值越小,隐私保护程度越高。常见的实现机制包括拉普拉斯噪声和指数噪声机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先要明白什么是隐私?若单个用户的某个属性可以是隐私,而一群用户的某个属性就可以不看做隐私了。例如,张三喜欢抽烟,所以得了肺癌。这个“张三得了肺癌”这条信息就是隐私。而医院里,抽烟的人容易得肺癌,这就不属于隐私。

因此,差分隐私是来保护隐私的密码学技术,通过对查询的结果加入噪声,而使得攻击者无法判断某个样本是否在数据集中。

差分隐私(Differential Privacy),简称DP,旨在传输的梯度信息中加入随机噪声,并将其查询操作的实际结果隐藏起来或者模糊化,直至无法区分,从而实现对私密数据的保护。

DP是Dwork在2006年提出的一种严格可证明的隐私保护技术。其核心思想是对于差别只有一条记录的两个数据集DDDD‘D‘D,查询它们获得相同值的概率非常接近。这两个数据集称为邻居(相邻)数据集。

定义:令MMM为随机算法,DDDD′D'D为相邻数据集,若MMMDDDD′D'D上任意输出的结果SSS都满足如下式子,则称MMM实现了(ϵ,δ)(\epsilon, \delta)(ϵ,δ)差分隐私。
Pr(M(D)∈S)=eϵ×Pr(M(D′)∈S)+δPr(M(D)\in S) = e^{\epsilon}\times Pr(M(D')\in S) + \deltaPr(M(D)S)=eϵ×Pr(M(D)S)+δ
其中参数ϵ\epsilonϵ称为隐私预算,代表了差分隐私技术所实现的隐私保护程度,ϵ\epsilonϵ值越小表示隐私保护程度越高。Pr(M(D)∈S)Pr(M(D)\in S)Pr(M(D)S)表示随机算法MMM的输出属于集合SSS的概率。ϵ\epsilonϵ表示违背严格差分隐私的概率,若δ=0\delta = 0δ=0,则随机算法MMM表示严格的ϵ−\epsilon-ϵ差分隐私,否则为松弛差分隐私

常用的实现隐私保护的机制有拉普拉斯噪声机制[1]和指数噪声机制[2],这里我并没有继续深入阅读,后续可能会继续展开。

[1] Dwork C, Roth A. The algorithmic foundations of differential privacy[J]. Foundations and Trends in Theoretical Computer Science, 2014, 9(3-4): 211-407.
[2] McSherry F, Talwar K. Mechanism design via differential privacy[C]. 48th Annual IEEE Symposium on Foundations of Computer Science, 2007.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值