加载预训练参数的四种方法

文章讲述了在PyTorch中如何加载预训练模型的权重,包括检查文件存在性,删除特定层的权重,以及自定义模型时从预训练模型中迁移权重的过程。同时,提供了一个resnet18模型预训练和调整最后一层以适应不同类别数目的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、


model_weight_path = ""
assert os.path.exists(model_weight_path), "file {} dose not exist.".format(model_weight_path)
pre_weights = torch.load(model_weight_path, map_location=device)

 # delete classifier weights
pre_dict = {k: v for k, v in pre_weights.items() if net.state_dict()[k].numel() == v.numel()}
net.load_state_dict(pre_dict, strict=False)

二、


weights_dict = torch.load("path",map_location=device)
# 删除有关分类类别的权重
for k in list(weights_dict.keys()):
   if "fc" in k:
      del weights_dict[k]
net.load_state_dict(weights_dict, strict=False)

三、


#加载model,mymodel是自己定义好的模型
    pretrainedmodel = resnet18(pretrained=True) 
    # mymodel =Net(...) 
    
    #读取参数 
    pretrained_dict = pretrainedmodel.state_dict() 
    model_dict = net.state_dict() 
    
    #将pretrained_dict里不属于model_dict的键剔除掉 
    pretrained_dict =  {k: v for k, v in pretrained_dict.items() if k in model_dict} 
    
    # 更新现有的model_dict 
    model_dict.update(pretrained_dict) 
    
    # 加载我们真正需要的state_dict 
    net.load_state_dict(model_dict)

四、


def resnet18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    if kwargs['num_classes'] != 1000 and pretrained:
        model = ResNet(BasicBlock, [2, 2, 2, 2])
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
        model.fc = nn.Linear(model.fc.in_features, kwargs['num_classes'])
        print('done load model')
    else:
        model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)

    return model
<think>好的,用户想在PyCharm中加载预训练的机器学习或深度学习模型。首先,我得回忆一下加载预训练模型的一般步骤。根据引用[1],使用PyTorch时,可以通过models.resnet18(pretrained=False)来载入模型结构但不加载预训练参数。如果用户需要预训练权重,应该设置pretrained=True。不过现在PyTorch更新后,可能需要用weights参数,比如weights=ResNet18_Weights.IMAGENET1K_V1。 然后,用户可能在安装环境上有问题。根据引用[2]和[3],需要安装PyTorch和相关依赖。在PyCharm中,用户可能需要通过终端或设置中的Python解释器来安装这些包。确保PyCharm项目使用的Python环境已经正确安装了PyTorch。 接下来是代码部分。用户需要在PyCharm中编写加载模型的代码。例如,使用torchvision.models加载ResNet,并设置pretrained参数。现在可能需要使用新的语法,比如指定weights参数。需要提醒用户注意版本差异,避免因版本问题导致代码报错。 另外,用户可能需要下载预训练权重。有时候需要手动下载,或者确保网络连接正常,让模型自动下载。如果下载慢,可能需要配置镜像源或者手动放置权重文件。 还有,加载模型后,可能需要调整模型结构,比如修改全连接层以适应自己的任务。例如,分类任务中替换最后的全连接层,并冻结前面的层进行微调。 最后,测试代码是否能在PyCharm中正确运行。可能需要导入必要的模块,如import torch和import torchvision.models as models。同时,注意CUDA是否可用,是否需要将模型移到GPU上。 用户可能遇到的常见问题包括环境配置错误、版本不兼容、权重下载问题,以及模型结构调整不正确。需要提醒用户检查这些方面,并提供相应的解决建议,比如查阅官方文档或社区资源。</think>在PyCharm中加载预训练模型需要以下几个步骤: ### 一、环境准备 1. 安装PyTorch框架 ```bash pip install torch torchvision torchaudio ``` 推荐使用PyTorch官方提供的安装命令[^3] 2. 确保PyCharm配置了正确的Python解释器 - 通过`File > Settings > Project: <your_project> > Python Interpreter`检查 ### 二、加载预训练模型(以ResNet为例) ```python import torch import torchvision.models as models # 加载模型结构与预训练权重 model = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1) # 查看模型结构 print(model) ``` ### 三、关键参数说明 1. `weights`参数:指定预训练权重版本 ```python # 新版本PyTorch推荐写法 from torchvision.models import ResNet18_Weights model = models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1) ``` 2. 冻结参数(迁移学习场景) ```python for param in model.parameters(): param.requires_grad = False model.fc = torch.nn.Linear(512, 10) # 修改最后一层 ``` ### 四、注意事项 1. 自动下载的权重文件默认存储在: ``` ~/.cache/torch/hub/checkpoints/ ``` 2. 若下载失败,可手动下载权重文件后指定路径: ```python model.load_state_dict(torch.load('resnet18.pth')) ``` [^1]: 模型加载方法参考PyTorch官方文档 : PyTorch框架特性及安装说明
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值