图像检索与无线传感器网络聚类技术研究
1 内容基于图像的检索技术
1.1 图像检索原理
在图像检索中,会将查询图像和数据库图像的向量进行对比,筛选出最相似的图像作为检索结果。相似度的衡量主要基于颜色,具体操作如下:
- 计算查询图像和数据库图像的颜色数量,通过查看直方图来实现。
- 比较两幅图像中给定色调的比例,以此判断它们是否等效。满足大部分标准的图像即为最佳匹配。
由于基于内容的图像检索(CBIR)并非精确匹配,检索结果是按与查询图像的相似度排序的图像列表。
1.2 实验与结果
1.2.1 特征提取
使用 ID - SIFT 提取参考图像的特征。选取一个包含 1000 张与工业环境相关的随机图像的数据集进行测试,从该图像数据集中挖掘 ID - SIFT 特征并保存到另一个数据集中。对于另一幅待匹配图像,独立查看新图像中的每个元素与数据集中图像的关系,根据元素向量的欧几里得距离识别匹配的特征。
1.2.2 关键点提取与处理
- 提取图像在所有尺度和位置的关键点,即使尺度和位置都发生变化也能提取。
- 通过关键点定位,消除图像中对比度较低的点。
- 根据相邻图像的角度方位,至少进行一次基于方向的旋转。将每个元素在方向、尺度和区域变化时相对变化的图像数据记录为关键点。
1.2.3 编码与特征提取
将图像块打包成相关的量化器和位图图像。直接从编码信息中提取两种图像特征,即颜色相干特征(CCF)和位模式特征(BPF),用于对图像进行索引。图像的