74、图像检索与无线传感器网络聚类技术研究

图像检索与无线传感器网络聚类技术研究

1 内容基于图像的检索技术

1.1 图像检索原理

在图像检索中,会将查询图像和数据库图像的向量进行对比,筛选出最相似的图像作为检索结果。相似度的衡量主要基于颜色,具体操作如下:
- 计算查询图像和数据库图像的颜色数量,通过查看直方图来实现。
- 比较两幅图像中给定色调的比例,以此判断它们是否等效。满足大部分标准的图像即为最佳匹配。

由于基于内容的图像检索(CBIR)并非精确匹配,检索结果是按与查询图像的相似度排序的图像列表。

1.2 实验与结果

1.2.1 特征提取

使用 ID - SIFT 提取参考图像的特征。选取一个包含 1000 张与工业环境相关的随机图像的数据集进行测试,从该图像数据集中挖掘 ID - SIFT 特征并保存到另一个数据集中。对于另一幅待匹配图像,独立查看新图像中的每个元素与数据集中图像的关系,根据元素向量的欧几里得距离识别匹配的特征。

1.2.2 关键点提取与处理
  • 提取图像在所有尺度和位置的关键点,即使尺度和位置都发生变化也能提取。
  • 通过关键点定位,消除图像中对比度较低的点。
  • 根据相邻图像的角度方位,至少进行一次基于方向的旋转。将每个元素在方向、尺度和区域变化时相对变化的图像数据记录为关键点。
1.2.3 编码与特征提取

将图像块打包成相关的量化器和位图图像。直接从编码信息中提取两种图像特征,即颜色相干特征(CCF)和位模式特征(BPF),用于对图像进行索引。图像的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值