目录:
*SCC的概念和DFS生成树相关
*Tarjan算法求强联通分量
一:SCC的概念和DFS生成树相关
强联通分量:假设有一个有向图G,若其子图G*中任意两点均可达,则称G*是一个SCC
*对于任意孤点,我们也成其是一个SCC
(个人理解:SCC就是有向图中的环 + 孤点)
DFS生成树:即对一个图进行DFS的过程中,依照DFS的顺序构建的一颗生成树
DFS生成树上的边分为两种:树边和非树边,接下来介绍全部的3种非树边
前向边:由祖宗节点连向后代节点的边
横叉边:连接兄弟节点或者兄弟节点的后代的边
返祖边:由后代节点连向祖宗节点的边
如图:红色是前向边,紫色是横叉边,蓝色是返祖边
由此,我们可以得到一个重要性质:在DFS生成树中,当且仅当返祖边可以构成环
二:Tarjan算法求SCC
根据刚才的结论,Tarjan算法的核心就是找返祖边,算法具体流程如下:
需要维护的值:
dfn:这个点被打上的时间戳
low:这个点能访问到最小的dfn
st:一个栈,记录每一个未确定所属SCC的点
vis:表示这个点是否在栈中
一:遍历每一个没有被访问过的节点DFS
二:对每个点打上标记:
打上时间戳
初始化low值为这个点本身的时间戳
将这个点入栈
标记这个点在栈中
dfn[u] = ++ cnt;
st[++ top] = u;
vis[u] = 1;
low[u] = cnt;
三:遍历这个点的儿子节点,分三种情况
设这个点是u,儿子是v
1):儿子节点并未被访问过(dfn[v]=0),即u->v是一条树边
那我们直接对v点dfs,同时更新u的low值为min(low[u],low[v])
(因为如果v点能回溯到比u更早的节点,那u点一定也可以通过u->v回溯到比自己更早的节点)
2):儿子被访问过且在栈中(vis[v]=1),即u->v是一条返祖边
说明这个时候已经出现了环,我们只需要更新low[u]=min(low[u],low[v]),至于这么做的目的,我们在最后一步操作讲
3):儿子被访问过且不在栈中,即u->v是一条前向边或者横叉边
因为如果是前向边或者横叉边的话,说明这两个点的信息会被他们各自的其他边更新得到,即这条边没有任何价值(这是因为SCC是有向图中的概念,如果是双联通的话就有用了)
for(auto itr:v[u]){
if(!dfn[itr]){//未访问
tarjan(itr);//DFS
low[u] = min(low[u],low[itr]);
}
else if(vis[itr]){//在栈中
low[u] = min(low[u],low[itr]);
}
}
(我习惯用vector,换成链式前向星也是没有任何问题的,auto就是优化版本的迭代器这里的for就是在遍历所有儿子)
四:弹出栈
并不是每个点进完栈就要立刻弹出栈,当且仅当这个点是一个孤点或者环头(即在一个环中dfn值最小的点)时,需要将其和在它其后进栈的点都弹出栈(这些点在同一SCC内,这样说明它们已经找到了所属SCC,所以弹出栈)
if(low[u] == dfn[u]){//判定孤点或环头
++ num;//给SCC编号
while(st[top] != u && top){//同一SCC弹出栈
vis[st[top]] = 0;//因为出栈
-- top;
}
if(st[top] == u) {//环头出栈
vis[u] = 0;
-- top;
}
}
好了以上就是Tarjan算法求强联通分量的全部操作了
接下来看一下模版题洛谷P3387
首先我们考虑,如果这个图是DAG应该怎么做:
那就是一个很简单的dp,即dp[v] = max(dp[v],dp[u] + w[v]) (简单的拓扑排序基础我就不说了)
那如果有环呢?很简单,因为每个点经过只算一次,所以我们只需要把每个环都缩成一个点,这个新点的权值和为这个环内所有点的点权。然后这个图就变成了一个DAG,按照刚才的办法做就可以了
附上代码:
#include<bits/stdc++.h>
using namespace std;
#define _for(i,a,b) for(int i = a ; i <= b ; i ++)
#define for_(i,a,b) for(int i = a ; i >= b ; i --)
const int maxn = 1e5 + 10;
int dfn[maxn],low[maxn],vis[maxn],st[maxn],w[maxn],val[maxn],id[maxn],rd[maxn],dist[maxn];
int n,m,tp,cnt,num,ans;
vector<int>v[maxn];
vector<int>v2[maxn];
void tarjan(int u){//SCC缩点
st[++ tp] = u;
vis[u] = 1;
low[u] = dfn[u] = ++ cnt;
for(auto itr:v[u]){
if(!dfn[itr]) tarjan(itr),low[u] = min(low[u],low[itr]);
else if(vis[itr]) low[u] = min(low[u],low[itr]);
}
if(dfn[u] == low[u]){
++ num;
while(st[tp] != u){
vis[st[tp]] = 0;
val[num]+= w[st[tp]];//更新每个缩完的新点权值
id[st[tp]] = num;//记录每个点所属SCC
-- tp;
}
vis[st[tp]] = 0;
val[num] += w[st[tp]];
id[st[tp]] = num;
-- tp;
}
}
void topo(){
queue<int>q;
_for(i , 1 , num) {
if(!rd[i]) q.push(i),dist[i] = val[i];
}
while(!q.empty()){
int u = q.front();
q.pop();
for(auto itr:v2[u]){
rd[itr] --;
dist[itr] = max(dist[itr],dist[u] + val[itr]);//简单图上DP
if(rd[itr] == 0) q.push(itr);
}
}
_for(i , 1 , num ) ans = max(ans,dist[i]);
cout << ans;
}
int main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
cin >> n >> m;
_for(i , 1 , n) cin >> w[i];
_for(i , 1 , m){
int x,y;
cin >> x >> y;
v[x].push_back(y);
}
_for(i , 1 , n){
if(!dfn[i]) tarjan(i);
}
_for(i , 1 , n){
for(auto itr:v[i]){
if(id[itr] != id[i]){//如果不在同一SCC中,把这两个SCC连边
v2[id[i]].push_back(id[itr]);
rd[id[itr]] ++;
}
}
}
topo();
return 0;
}