🧩 题目描述
给你一个整数数组 coins
,表示不同面额的硬币;以及一个整数 amount
,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11 输出:3 解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3 输出:-1
示例 3:
输入:coins = [1], amount = 0 输出:0
🧠 解题思路:动态规划(完全背包)
✅ 状态定义:
dp[i]
:表示凑成总金额 i
所需的最少硬币数量。
✅ 初始化:
dp[0] = 0 # 凑成 0 元,硬币数为 0
其他 dp[i] = inf # 初始为无穷大,表示无法组成
✅ 状态转移方程:
对于每一个 coin
和每一个金额 i
:
dp[i] = min(dp[i], dp[i - coin] + 1)
含义:如果选择当前 coin
,就看 i - coin
最少需要多少个,再加上当前这个 coin
。
✅ 代码实现
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
# 初始化 dp 数组,默认无限大(表示不可达),dp[0] = 0
dp = [float('inf')] * (amount + 1)
dp[0] = 0
# 遍历每种硬币
for coin in coins:
# 从 coin 到 amount 遍历,代表当前金额
for i in range(coin, amount + 1):
# 状态转移:选或不选当前 coin
dp[i] = min(dp[i], dp[i - coin] + 1)
return dp[amount] if dp[amount] != float('inf') else -1
📈 示例说明
输入:
coins = [1, 2, 5], amount = 11
转移过程:
i(金额) | dp[i] 值更新过程 |
---|---|
1 | dp[1] = 1 (1) |
2 | min(dp[2], dp[1]+1) → 1 |
3 | min(dp[3], dp[2]+1) → 2 |
... | ... |
11 | min(dp[11], dp[6]+1) → 3 (5+5+1) |
⏱ 时间和空间复杂度
项目 | 复杂度 |
---|---|
时间复杂度 | O(n * amount),其中 n 是硬币种数 |
空间复杂度 | O(amount) 一维数组 |
📌 其他补充
-
无限背包: 每种硬币可重复使用,是典型的完全背包问题。
-
一维优化: 因为状态只依赖于前面,所以可以使用一维数组优化。