LeetCode 322. 零钱兑换(Coin Change)

322. 零钱兑换

🧩 题目描述

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11

输出:3
 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3

输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

🧠 解题思路:动态规划(完全背包)

✅ 状态定义:

dp[i]:表示凑成总金额 i 所需的最少硬币数量。

✅ 初始化:

dp[0] = 0  # 凑成 0 元,硬币数为 0
其他 dp[i] = inf  # 初始为无穷大,表示无法组成

✅ 状态转移方程:

对于每一个 coin 和每一个金额 i

dp[i] = min(dp[i], dp[i - coin] + 1)

含义:如果选择当前 coin,就看 i - coin 最少需要多少个,再加上当前这个 coin。 

✅ 代码实现 

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        # 初始化 dp 数组,默认无限大(表示不可达),dp[0] = 0
        dp = [float('inf')] * (amount + 1)
        dp[0] = 0

        # 遍历每种硬币
        for coin in coins:
            # 从 coin 到 amount 遍历,代表当前金额
            for i in range(coin, amount + 1):
                # 状态转移:选或不选当前 coin
                dp[i] = min(dp[i], dp[i - coin] + 1)

        return dp[amount] if dp[amount] != float('inf') else -1

📈 示例说明

输入:

coins = [1, 2, 5], amount = 11

转移过程: 

i(金额)dp[i] 值更新过程
1dp[1] = 1 (1)
2min(dp[2], dp[1]+1) → 1
3min(dp[3], dp[2]+1) → 2
......
11min(dp[11], dp[6]+1) → 3 (5+5+1)

⏱ 时间和空间复杂度 

项目复杂度
时间复杂度O(n * amount),其中 n 是硬币种数
空间复杂度O(amount) 一维数组

📌 其他补充

  • 无限背包: 每种硬币可重复使用,是典型的完全背包问题。

  • 一维优化: 因为状态只依赖于前面,所以可以使用一维数组优化。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值