
计算机视觉
文章平均质量分 96
计算机视觉
__星辰大海__
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
世界坐标系到像素坐标系的变换
现在我们来推导从世界坐标系到像素坐标系的变换矩阵。假设世界坐标系、相机坐标系、图像坐标系和像素坐标系如下图所示:点P为三维空间上的一点,它在世界坐标系和相机坐标系上的坐标分别为xwywzw和xcyczc。点P在图像坐标系上对应点P′,点P′在图像坐标系和像素坐标系上的坐标分别为xy和uv。相机的焦距为f,单位为米m。:为了更加方便地描述,设置相机坐标系的Xc轴和Yc轴与图像坐标系的X轴和Y轴以及像素坐标系的U。原创 2025-05-10 00:33:37 · 1446 阅读 · 0 评论 -
距离度量类型总结
曼哈顿距离(Manhattan Distance,也称为 L1 距离)的定义为:在直角坐标系中,两点之间的距离是它们在各坐标轴方向上差的绝对值之和。曼哈顿距离的几何意义是"沿轴向移动的最短路径",常用于计算两点间的最短可行路径。在 nnn 维空间中,点 A=(a1a2⋮an)A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}A=a1a2⋮an 和点 B=(b1b2⋮bn)B = \begin{pmatrix} b_1原创 2025-06-26 22:38:51 · 847 阅读 · 0 评论 -
TPAMI 1991:Least-Squares Estimation of Transformation Parameters Between Two Point Patterns
如下图所示,在计算机视觉任务中,经常需要计算两个点集之间的相似变换。具体地,设存在两个点集 {xi∈Rm}\{\boldsymbol{x_i} \in \Bbb{R}^m\}{xi∈Rm} 和 {yi∈Rm}\{\boldsymbol{y_i} \in \Bbb{R}^m\}{yi∈Rm}(mmm 一般取值为 2 或者 3),其中 i=1,2,⋯ ,ni = 1, 2, \cdots, ni=1,2,⋯,n。我们需要求解相似变换参数(旋转矩阵 R\mathbf{R}R,平移向量 t\boldsymbol原创 2025-06-25 19:28:21 · 1158 阅读 · 0 评论 -
三维重建 —— 7. 透视结构恢复
透视结构恢复问题的数学模型如下图所示:透视结构恢复的歧义如下图所示。从图中可以看出,xij=MiXj=(MiH−1)(HXj)=M∗X∗x_{ij} = \mathbf{M}_i X_j = (\mathbf{M}_i \mathbf{H}^{-1})(\mathbf{H} X_j) = \mathbf{M}^* X^*xij=MiXj=(MiH−1)(HXj)=M∗X∗。因此,估计的投影矩阵 M∗\mathbf{M^*}M∗ 与真实的投影矩阵 M\mathbf{M}M 至多相差一个可逆矩阵原创 2025-06-18 19:15:53 · 945 阅读 · 0 评论 -
直线拟合 - 最小二乘法与 RANSAC 算法
课程视频链接:北京邮电大学_计算机视觉_鲁鹏_第三次课_拟合 和 北京邮电大学_计算机视觉_鲁鹏_第4次课_拟合(RANSAC复习,hough)。如下图所示,设二维平面内存在 nnn 个点 {(xiyi)}i=1n\{ \begin{pmatrix} x_i \\ y_i \end{pmatrix} \}_{i = 1}^{n}{(xiyi)}i=1n,现需构造最优直线模型来拟合该数据集,下面从三种不同的方法来解决这个问题。对下面所述的各个算法做一个总结图,如下图所示:最小二乘法(Least原创 2025-06-17 22:28:58 · 1424 阅读 · 0 评论