报错合集与函数递归

1. 编程常见错误归类

1.1 编译型错误

编译型错误⼀般都是语法错误,双击错误信息也能初步的跳转到代码错误的地⽅或者附近

1.2 链接型错误

经典报错标语:无法解析外部符号
⼀般是因为:
标识符名不存在
拼写错误
头文件没包含
引用的库不存在

1.3运⾏时错误

最可怕的
运⾏时错误是千变万化的,需要借助调试逐步定位问题

2.函数递归

递归必须依附于函数而存在
递归必须写成函数

2.1.concept

递归就是函数⾃⼰调⽤⾃⼰
最简单的C语言递归代码:
#include <stdio.h>

int main()
{

printf("hehe\n");
main();//main函数中⼜调⽤了main函数

return 0;
}
上述就是⼀个简单的递归程序,代码最终也会陷⼊死递归,导致栈溢出:每一次函数调用,都会申请栈空间

2.1.1思想

把⼀个大型复杂问题层层转化为⼀个与原问题相似,但规模较小的子问题来求解;直到子问题不能被拆分,递归就结束了。即:大事化小
递即递推,归即回归

2.1.2 递归的限制条件

有2个必要条件:
递归存在限制条件,当满⾜这个限制条件的时候,递归便不再继续
每次递归调⽤之后越来越接近这个限制条件

2. 2举例

2.2.1 举例1:求n的阶乘

⼀个正整数的阶乘factorial是所有⼩于及等于该数的正整数的积,规定0的阶乘为1,⾃然数n的阶乘写作 n!
题⽬:计算n的阶乘(不考虑溢出),n的阶乘就是1~n的数字累积相乘
2.2.1.1 分析和代码实现
n的阶乘的公式: n= n ∗ (n − 1)!
举例:
5! = 5*4*3*2*1
4! = 4*3*2*1
所以:5! = 5*4!
n的阶乘和n-1的阶乘是相似的问题,但是规模要少了n。有⼀种有特殊情况是:当 n==0 的时候,n的阶乘是1,⽽其余n的阶乘都是可以通过上⾯的公式计算
这样就能写出 n 的阶乘的递归公式如下:
Fact(n) == 1, n==0
                 n*Fact(n-1), n>0
那我们就可以写出函数Fact求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n-1)就是求n-1的阶
乘,函数如下:
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
测试:
#include <stdio.h>

int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}

int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fact(n);
printf("%d\n", ret);
return 0;
}
运⾏结果(这⾥不考虑n太⼤的情况,n太大存在溢出)

2.2.2举例2:顺序打印⼀个整数的每⼀位

输⼊⼀个整数m,按照顺序打印整数的每⼀位:
输⼊:1234         输出:1 2 3 4
输⼊:520           输出:5 2 0
2.2.2.1 分析和代码实现
如果n是⼀位数,n的每⼀位就是n自己
n是超过1位数,就得拆分每⼀位1234%10就能得到4,然后1234/10得到123,这就相当于去掉了4
然后继续对123%10,就得到了3,再除10去掉3,以此类推 ,不断的 %10 和 /10 操作,直到1234的每⼀位都得到
但是这⾥有个问题就是得到的数字顺序是倒着的
但是我们发现其实⼀个数字的最低位是最容易得到的,通过%10就能得到
那我们假设想写⼀个函数Print来打印n的每⼀位,如下表示:
Print(n)
如果n1234,那表示为
Print(1234) //打印1234的每⼀位
其中1234中的4可以通过%10得到,那么
Print(1234)就可以拆分为两步:
1. Print(1234/10) //打印123的每⼀位
2. printf(1234%10) //打印4
完成上述2步,那就完成了1234每⼀位的打印
那么Print(123)⼜可以拆分为Print(123/10) + printf(123%10)
以此类推下去,就有
Print(1234)
==>Print(123) + printf(4)
==>Print(12) + printf(3)
==>Print(1) + printf(2)
==>printf(1)
直到被打印的数字变成⼀位数的时候,就不需要再拆分,递归结束
那么代码完成也就比较清楚:
void Print(int n)
{
if(n>9)
{
Print(n/10);
}
printf("%d ", n%10);
}
int main()
{
int m = 0;
scanf("%d", &m);
Print(m);
return 0;
}
在这个解题的过程中,我们就是使用了大事化小的思路
把Print(1234) 打印1234每⼀位,拆解为⾸先Print(123)打印123的每⼀位,再打印得到的4
把Print(123) 打印123每⼀位,拆解为⾸先Print(12)打印12的每⼀位,再打印得到的3
直到Print打印的是⼀位数,直接打印就⾏

3. 递归与迭代

递归是⼀种很好的编程技巧,但也可能被误用
就像举例1⼀样,看到推导的公式,很容易就被写成递归的形式:
Fact(n) == 1 , n==0
                  n*Fact(n-1), n>0
int Fact(int n)
{
if(n == 0)
return 1;
else
return n * Fact(n-1);
}
Fact函数是可以产生正确的结果,但是在递归函数调⽤的过程中涉及⼀些运⾏时的开销:
在C语⾔中每⼀次函数调用,都需要为本次函数调⽤在内存的栈区,申请⼀块内存空间来保存函数调 ⽤期间的各种局部变量的值,这块空间被称为运⾏时堆栈,或者函数栈帧
函数不返回,函数对应的栈帧空间就⼀直占⽤,所以如果函数调⽤中存在递归调⽤的话,每⼀次递归 函数调⽤都会开辟属于⾃⼰的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。
所以如果采⽤函数递归的⽅式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢出的问题。
所以如果不想使用递归,就得想其他的办法,通常就是迭代的⽅式(循环)
⽐如:计算 n 的阶乘,也是可以产⽣1~n的数字累乘
int Fact(int n)
{
if(n == 0)
return 1;
else
return n * Fact(n-1);
}
上述代码是能够完成任务,并且效率是⽐递归的⽅式更好的
事实上,我们看到的许多问题是以递归的形式进⾏解释的,这只是因为它⽐⾮递归的形式更加清晰,但是这些问题的迭代实现往往⽐递归实现效率更⾼
当⼀个问题⾮常复杂,难以使⽤迭代的⽅式实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销

3.1举例:求第n个斐波那契数

计算第n个斐波那契数是不适合使⽤递归求解的,但是斐波那契数的问题通过是使⽤递归的形式描述的,如下:
 
int Fact(int n)
{
if(n == 0)
return 1;
else
return n * Fact(n-1);
}
测试代码:
#include <stdio.h>
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
return 0;
}
当我们n输⼊为50的时候,需要很⻓时间才能算出结果,说明递归的写法是⾮常低效的,
其实递归程序会不断的展开,在展开的过程中,我们很容易就能发现,在递归的过程中会有重复计
算,⽽且递归层次越深,冗余计算就会越多。所以斐波那契数的计算,使⽤递归是⾮常不明智的,就得想迭代的⽅式解决
我们知道斐波那契数的前2个数都1,然后前2个数相加就是第3个数,那么我们从前往后,从⼩到⼤计算就⾏:


int Fib(int n)
{
int a = 1;
int b = 1;
int c = 1;
while(n>2)
{
c = a+b;
a = b;
b = c;
n--;
}
return c;
}
迭代的方式去实现这个代码,效率就要高很多
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值