动态规划day37|完全背包理论基础、518. 零钱兑换 II(组合问题)、377. 组合总和 Ⅳ(排列问题)、57.爬楼梯(怎么初始化?哪些才是物品?)
完全背包理论基础
-
最明显特征:同一个物品可以使用多次
-
实现形式:在01背包一维形式的基础上去做调整,核心改动点其实只有for循环,即:
for(int i = 0; i < weight.size(); i++) // 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++) // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
第二层的for循环改成从小到大遍历了,这样对于同一个物品,容量大的背包就可以直接在容量小但已经装了该物品的背包的基础上修改了,从而实现了同一个物品的多次使用
518. 零钱兑换 II(组合问题)
给你一个整数数组 coins
表示不同面额的硬币,另给一个整数 amount
表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0
。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
示例 1:
输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。
示例 3:
输入:amount = 10, coins = [10]
输出:1
提示:
1 <= coins.length <= 300
1 <= coins[i] <= 5000
coins
中的所有值 互不相同0 <= amount <= 5000
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<