【机器学习|学习笔记】详解支持向量机(Support Vector Machine,SVM)为何要引入核函数?为何对缺失数据敏感?

【机器学习|学习笔记】详解支持向量机(Support Vector Machine,SVM)为何要引入核函数?为何对缺失数据敏感?

【机器学习|学习笔记】详解支持向量机(Support Vector Machine,SVM)为何要引入核函数?为何对缺失数据敏感?



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/148514108


🔍 一、为什么 SVM 要引入核函数?【解决线性不可分问题】

✅ 背景:现实世界中的数据常常是非线性可分的

  • 例如:
from skl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想努力的小土博

您的鼓励是我创作的动力!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值