接上一篇高效训练,这一篇汇总下高效推理的方法。高效推理的两个主要优化目标是低延迟(快速得到推理结果)和高吞吐量(能同时处理很多请求),同时还要尽可能地少用资源(算力、存储、网络带宽)。
如果要说高效训练和高效推理哪个更重要,从产生的效益来说,应该说高效推理更重要,因为模型训练出来最终都是要用来推理使用的。整个生态产业中,训练基座大模型的就那么多家,训练出来更多时间也是对外提供推理服务;具体一个企业中,训练或者微调完模型后,多数时间也是在业务场景中使用推理。
高效推理如此重要,少不了学者们已经总结了综述文章,本文主要基于两篇综述文章,取其精华,从不同的分类角度全面概括高效推理的方法。目前Transformer结构基本一统大模型江山,多数高效推理方法均针对Transformer模型结构。
1
综述一
来自于2023年12月卡莱基梅隆大学的《Towards Efficient Generative Large Language Model Serving:A Survey from Algorithms to Systems》,是一个比较简洁版的综述,从机器学习系统研究的角度,分类如下:
图1. LLM推理技术分类,来源[1]
总体分为模型算法、系统优化两个大类,由于第二篇综述在此基础上增加了数据维度,更全面,我们只从本综述挑选亮点分部分介绍。
1.1 Decoder算法优化
对Decoder算法优化的总结,如下图2。大模型中最常见的是只有解码器的Decoder-Only结构,解码器中最常见的是自回归模型,见图中(a),每一时刻由上一token预测下一token,每一次预测由于attention计算都要消耗大量的资源,优化Decoder就是要想办法减少资源消耗,提高计算效率,包括图中后面四种方法。
图2. 大模型Decoder算法分类,来源[1]
前排提示,文末有大模型AGI-CSDN独家资料包哦!
Non-autoregressive decoding
token不再是一个一个预测出来,一次预测多个或者并行预测多个tokens,该方法假设前后token之间有一定的条件独立性。当前该方法比自回归方法速度更快,但可靠性还是比自回归方法低。
Early exiting
每次预测下一个token不一定计算完整的Transformer层,根据不同的情况提前退出得到预测的token,以便减少计算量,但该方法可能导致预测准确率下降。
Speculative decoding
用一个小模型预测token(只是其中一种方式),这样出结果快,同时用原始大模型验证结果,不对就纠正,LLM计算量没有变,但验证的时候可以并行计算节约时间。
Cascade inference
将共享前缀的 KV Cache 存到共享内存中,读一次共享前缀的 KV Cache 即可,具有独特的后缀部分保持原来的计算逻辑,最终共享前缀和独特的后缀部分的各自的部分 attention 结果合并起来,得到最终的 attention 结果。
1.2 开源推理工具
市面上主要的开源推理工具,考察支持的指标包括:
**并行计算方式:**张量并行、流水线并行、计算资源是否offload到系统CPU或者内存上。
**Iteration Scheduling:**