AI编程到底有没有护城河?RL+Agent重塑代码世界!

前言

最近AI编程赛道,已经成了一个香饽饽了,国内外的巨头都在下场,初创公司也打的活人。

Windsurf的CEO昨天还在X上吐槽Anthropic断供API,委屈的像个小媳妇。

今天,cursor更新了1.0版本,作为一个cursor重度使用用户 & 算法出身玩家,今天给家人们分享一下AI编程这个赛道的一些技术内幕。(不知道今天的文章的目标用户是谁,写着玩了~)

AI编程视角下的RL

写代码不像写文章,AI不仅要生成token,还要调用各种工具(比如Linter、编译器、测试框架),每一步的选择都非常多。

那到底怎么才算“好代码”?

这个问题思考清楚了,才能理解coding RL的奖励函数要怎么去做。

仅仅通过测试用例是不够的。代码的可读性、简洁性、优雅性怎么衡量?

之前分享过,不管是cursor、还是claude。似乎都用了一些高质量的“ground truth diff”作为信号,就是模型生成的代码与人类工程师的修改差异。

而一些高质量的github开源项目的commit,pr提供了非常好的训练数据。

图片

但是知道这个还是不够,因为很多时候,模型可能要尝试很多次才能得到一个“正确”的输出(比如通过所有测试)。如果模型一千次尝试才成功一次,这个奖励信号就太稀疏了。如何在大量失败中学习,是训练好coding RL面临的一大难题。

还有个难题是,实际用户并不会明确告诉AI“你做得对不对”,如何在这种情况下进行RL优化,也是一个问题。

AI编程的体验进化要素

记忆

包含2个核心动作: 存储记忆、检索记忆。

教模型检索记忆相对容易,但教模型存储什么记忆才有用则非常复杂,因为奖励信号可能依赖于未来的、不相关的任务。

如何通过非模型训练的方式(比如基于启发式规则)来生成和评估记忆,解决信用分配难题。(什么是信用分配?简单来说,就是当一个智能体执行了一系列动作并最终获得了一个奖励或惩罚时,很难判断出到底是序列中的哪一个或哪些具体动作对最终的结果贡献最大)。

长上下文

更长的上下文意味着模型能看到更多代码,理解更复杂的项目。一般至少需要50-60k token才能较好处理实际代码库。

但长上下文也带来了高昂的成本和性能挑战。如何高效缓存和复用上下文,是优化的关键。

一些研究工作,比如Squid Attention,允许独立处理每个文档(文件)的上下文,然后在顶层进行融合,对于缓存和快速切换上下文非常友好。

工具演进

从最基础的 Terminal(简单直接,但对模型要求高),到更智能的工具 Linter错误提示(提供丰富信号,但部署复杂)

语义搜索(更快找到相关代码,节省上下文)、思考工具(让模型在需要复杂推理时调用,避免过度思考)。

当然,还是要多关注PRs。不仅仅是训练,通过分析大量PR,理解高质量代码是如何通过迭代修改和评审产生的,可以极大提升其生成代码的实用性和质量。

cursor 1.0

最后聊一下今天的cursor大版本更新,总体感觉算不上这么大版本的更新~

1.0大版本,更新提醒都变得巨大~

图片

  • 支持 Jupyter NoteBook ! 可以直接在Notebook中创建和编辑多个单元格了。 因为一直在用Jupyter,所以这是我看到最兴奋的一个功能了~
  • 做了一个类似MCP商店的东西。MCP一键安装,OAuth支持
  • 新的Memories机制,Cursor可以记住对话中的事实,并在未来的交互中引用它们。 记忆是按项目存储在个人层面的,可以在设置中管理。但是!需要解除隐私协议,也就是需要给cursor共享数据,可能很多用户没法体验这个能力。
  • BugBot功能,很早之前的Cursor可以找bug,1.0类似的功能又回来了。自动审查PRs,发现潜在的bug和问题,并直接在Git上留下评论。可以一键“Fix in Cursor”,直接跳转回编辑器,并带有预设好的修复提示。
  • 之前小范围测试的Background Agent现在对所有用户开放了!可以通过聊天窗口的云图标或者快捷键(Cmd/Ctrl+E,需禁用隐私模式)来唤醒它。这个功能让AI可以在后台帮你处理更复杂的编码任务。

最后

最新的AI编程工具的几个明显趋势:

无论是通过更长的上下文窗口、更优化的注意力机制,还是引入专门的记忆模块,让AI更好地理解项目全貌和历史交互,都是核心方向。

AI不仅要会写代码,更要会用工具。Linter、调试器、版本控制、甚至与其他开发者协作,这些都是AI Agent需要掌握的技能。

从代码审查到各种工具支持,再到后台任务处理,AI编程工具正在努力融入开发者的日常工作流程中,成为真正的助手。

未来的AI Agent可能会针对特定的代码库进行“微调”或“适配”,学习该代码库的风格、规范和常用模式,提供更精准的服务。

无论是vibe coding还是AI coding。相关的工具都在在不断进化。它们早已不仅仅是简单的代码补全工具,更像是一个初级的“AI程序员”,未来可期。

最后

为什么要学AI大模型

当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!

DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。

在这里插入图片描述

与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
在这里插入图片描述
最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

AI大模型系统学习路线

在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。

img

但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。

AI大模型入门到实战的视频教程+项目包

看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径

在这里插入图片描述
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

海量AI大模型必读的经典书籍(PDF)

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
在这里插入图片描述

600+AI大模型报告(实时更新)

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

AI大模型面试真题+答案解析

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
在这里插入图片描述

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值