【零基础保姆级教程】mmcv安装教程

mmcv这个库比较难安装,但在进行深度学习工作的时候却又很难避开,若是没有安装conda环境和CUDA环境的尤其难安装,若大家有遇到mmcv安装上的问题,可按照本文的步骤一步步安装即可解决。

本文示例环境
系统及版本Windows10
示例电脑

联想小新2021酷睿版(轻薄本)

联想拯救者R7000电脑(游戏本)

i7-10700+RTX4000(台式机)

适用人群ALL

MMCV最初是与MMDetection、MMsegmentation等项目一起由阿里巴巴达摩院开发的,这些项目主要使用的是PyTorch框架。因此,MMCV是一个基于Python和PyTorch的库。

MMVC简介:

MMCV提供了一系列用于计算机视觉任务的基础工具和组件,包括数据加载器、图像转换操作、评估指标等。它旨在简化常见的计算机视觉任务,如目标检测、实例分割、语义分割等,并且为研究者和开发者提供了可复用的代码模块。

使用场景:

  1. 目标检测:在训练和评估目标检测模型时,MMCV可以处理数据集的加载、预处理以及后处理步骤。
  2. 实例分割:对于实例分割任务,MMCV提供了必要的工具来处理掩码数据。
  3. 语义分割:在语义分割任务中,MMCV可以帮助处理像素级别的标签。
  4. 关键点检测:在人体姿态估计等任务中,MMCV可以处理关键点数据。
  5. 视频理解:虽然主要针对静态图像,但一些扩展库如MMAction2也适用于视频动作识别等任务。

环境需求:

首先,大家常会采用'pip install xxx'或'conda install xxx'来安装某些库,但不指定版本等情况下会默认安装最新版本或即使不是最新,而是版本号“最大”的一个版本,而这也常常会和自己的基本环境造成很大程度的冲突,导致安装失败甚至环境出现bug等情况。

安装失败的情况如下:

      Internal Compiler Error in C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\BIN\x86_amd64\cl.exe.  You will be prompted to send an error report to Microsoft later.    
      INTERNAL COMPILER ERROR in 'C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\BIN\x86_amd64\cl.exe'
          Please choose the Technical Support command on the Visual C++
          Help menu, or open the Technical Support help file for more information
      [end of output]

  note: This error originates from a subprocess, and is likely not a problem with pip.
  ERROR: Failed building wheel for mmcv
  Running setup.py clean for mmcv
Failed to build mmcv
ERROR: Could not build wheels for mmcv, which is required to install pyproject.toml-based projects

上图是直接进行'pip install mmcv'报的错。

因此,在安装mmcv的时候,应根据自己的版本号、基本环境进行安装。

torch环境仍未安装好?根据我以下文章按步骤进行。

【保姆级最简洁教程】零基础如何快速搭建YOLOv5/v7?_yolov7保姆级教程-CSDN博客

一、CPU训练、python基本环境下的mmcv安装

首先,要确定自己的环境安装情况,若你已经安装好了自己的conda环境,且需要采用GPU训练的,看第二点。第一点适合CPU训练且采用python环境解释器的同学。下图是python解释器。

命令示例:

pip install mmcv==2.1.0 -f https://download.openmmlab.com/mmcv/dist/cpu/torch2.1/index.html

这个命令的大致意思是采用mmcv2.1.0版本,windows环境,cpu,torch版本是适合cpu的2.1.x版本。

因此,安装前需要先确定自己的torch版本、需要安装的mmcv版本。

查询自己torch版本示例如下。

import torch
print(torch.__version__)

最终控制台返回如下字样代表成功。

Successfully installed mmcv-(X.X.X)

二、GPU训练、conda基本环境下的mmcv安装

该点适合GPU环境安装。

首先选择适合自己的环境、确定自己的CUDA版本、torch版本、需要安装的mmcv版本

命令示例如下。

pip install mmcv==2.2.0 -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12/index.html

mmcv==2.2.0代表安装mmcv2.2.0版本。

cu116代表你采用的是CUDA11.6环境。

torch1.12代表你的torch环境是torch1.12.x环境。

按此步骤即可成功安装。

最终控制台返回如下字样代表成功。

Successfully installed mmcv-(X.X.X)

三、从官网网址安装

Installation — mmcv 2.2.0 documentation

打开该网址,移动到如下区域。

选择自己的环境安装。

最终控制台返回如下字样代表成功。

Successfully installed mmcv-(X.X.X)

更多文章产出中,主打简洁和准确,欢迎关注我,共同探讨!

### 如何解决 mmcv 安装时的报错问题 当遇到 `mmcv` 安装失败的情况时,可以按照以下方法排查并解决问题: #### 1. 确认本地环境配置 在安装之前,需确认当前环境中使用的 PyTorch 和 CUDA 版本。可以通过运行以下命令获取版本信息: ```python import torch print(torch.__version__) print(torch.version.cuda) ``` 此操作有助于匹配适合的 `mmcv` 版本[^1]。 #### 2. 使用官方推荐的安装方式 根据已知的 PyTorch 和 CUDA 版本,访问 [MMCV 官方文档](https://mmcv.readthedocs.io/en/latest/get_started/installation.html),选择与之兼容的 `mmcv` 或 `mmcv-full` 的具体版本,并复制相应的安装命令执行。例如: ```bash pip install mmcv==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html ``` 如果需要完整的功能支持,则可尝试安装 `mmcv-full`: ```bash pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html ``` 需要注意的是,某些情况下可能会因网络原因导致资源无法正常加载,建议多次尝试或者更换镜像源[^4]。 #### 3. 检查错误日志 若仍然发生错误,仔细阅读终端中的错误提示信息。常见的问题是由于编译器不兼容或缺少必要的依赖库引起的。对于 Windows 用户来说,“Failed building wheel for mmcv-full”的常见原因是未正确设置开发工具链。此时可以根据具体的错误消息调整构建参数或升相关组件[^5]。 #### 4. 替代方案——预编译二进制包 部分场景下可以直接利用已经预先编译好的 whl 文件来简化流程。前往 OpenMMLab 提供的存储地址寻找适配的目标文件手动下载后再通过 pip 进行本地安装[^3]: ```bash pip install /path/to/downloaded.whl ``` --- ### 总结 综上所述,针对不同类型的安装障碍采取针对性措施能够有效提升成功率。务必依据实际软硬件条件挑选恰当的方法实施部署工作。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拿下Nahida

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值