机器学习必备公式之Softmax函数

第一部分:介绍Softmax函数

Softmax 函数 是一种常用的归一化函数,通常用于多分类问题中。它将一个 K 维的实值向量转换为一个 K 维的概率分布,使得每个元素的值在 [0, 1] 之间,且所有元素的和为 1。

公式:

其中:

  •  是输入向量的第 i 个元素;
  •  是向量的维度;
  •  是 的指数;
  • 分母是所有元素的指数和。

作用:

  • 将输入向量转换为概率分布,便于分类问题中使用。
  • 通过指数运算,放大了不同元素之间的差异。

第二部

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值