第一部分:介绍Softmax函数
Softmax 函数 是一种常用的归一化函数,通常用于多分类问题中。它将一个 K 维的实值向量转换为一个 K 维的概率分布,使得每个元素的值在 [0, 1] 之间,且所有元素的和为 1。
公式:
其中:
是输入向量的第 i 个元素;
-
是向量的维度;
-
是
的指数;
- 分母是所有元素的指数和。
作用:
- 将输入向量转换为概率分布,便于分类问题中使用。
- 通过指数运算,放大了不同元素之间的差异。
Softmax 函数 是一种常用的归一化函数,通常用于多分类问题中。它将一个 K 维的实值向量转换为一个 K 维的概率分布,使得每个元素的值在 [0, 1] 之间,且所有元素的和为 1。
公式:
其中:
作用: