【PINN】DeepXDE学习训练营(6)——function-mf_func.py

一、引言

        随着人工智能技术的飞速发展,深度学习在图像识别、自然语言处理等领域的应用屡见不鲜,但在科学计算、工程模拟以及物理建模方面,传统的数值方法仍然占据主导地位。偏微分方程(Partial Differential Equations, PDEs)作为描述自然界中众多复杂现象的重要数学工具,在物理、化学、工程、金融等领域具有广泛应用。然而,伴随着高维度、多变量、复杂边界条件等挑战,传统数值求解方法面临效率低、适应性差等困境。

        近年来,深度学习的崛起为科学计算带来了全新的解决思路。其中,以深度偏微分方程(Deep PDE)为代表的研究方向,通过结合神经网络与偏微分方程的理论,成功开发出高效、灵活的求解方案。这种方法不仅可以克服传统方法的局限,还能应对高维、复杂几何等问题。

        作为深度偏微分方程领域的开源工具库,DeepXDE(Deep Learning for Differential Equations)由lululxvi团队精心开发,凭借其强大的功能、易用的接口和丰富的示例,受到学术界与工业界的广泛关注。本文将系统介绍DeepXDE的基本内容与应用价值,深入探讨其核心技术原理,分享环境配置与运行技巧,并结合实际案例进行分析,最后对未来发展趋势进行展望。

        


二、DeepXDE的用途

        DeepXDE,一个基于TensorFlow和PyTorch的深度学习微分方程求解库,应运而生。它提供了一个简洁、高效且易于使用的框架,使得研究人员和工程师能够利用深度学习技术求解各种类型的微分方程,包括常微分方程(ODEs)、偏微分方程(PDEs)、积分微分方程(IDEs)以及分数阶微分方程(FDEs)。

        DeepXDE旨在提供一站式的深度学习框架,用于高效求解各种偏微分方程,包括但不限于:

        1. 传统偏微分方程求解

  • 定常和非定常问题:热传导方程、波动方程、拉普拉斯方程、扩散方程等。
  • 线性和非线性方程:支持线性边界条件,也能处理非线性、非局部问题。

        2. 高维偏微分方程

        在高维空间中,传统数值方法面临“维数灾难”。DeepXDE利用神经网络天然的高维逼近能力,有效解决高维PDE,如贝尔曼方程、多体问题等。

        3. 复杂几何和边界条件

        支持任意复杂的几何区域、非均匀边界条件,极大扩展了求解的适用范围。

        4.参数逆问题和数据驱动建模

        整合数据,使模型在已知部分信息的基础上进行参数识别、反演问题求解。

        5. 动态系统和时间演化

        支持带有时间变量的演化问题,模拟动态过程。

        6. 结合有限元、有限差分等方法

        虽然核心为神经网络,但兼容各种数值方法,提供灵活的求解策略。

        7. 教育科研与工程实践

        丰富的案例与接口帮助科研人员快速验证理论,工程师实现快速设计优化。

        总结而言,DeepXDE不仅是一个纯粹的数学工具,更是工程实践中的“聪明助手”,帮助用户以信赖深度学习的方式突破传统技术瓶颈,实现创新性的科学计算。


三、核心技术原理

        DeepXDE的核心思想是利用神经网络作为逼近器,通过构造损失函数,使网络能在满足偏微分方程边界条件的前提下逼近真实解。以下详细阐释其原理基础。

        1. 神经网络逼近偏微分方程解

        假设待求解的偏微分方程可以写成:

\mathcal{N}[u](x)=0,x\in\Omega,

        配合边界条件

\mathcal{B}[u](x)=g(x),x\in\partial \Omega,

        这里,\mathcal{N}代表微分算子,\mathcal{B}代表边界条件算子。

        DeepXDE利用深度神经网络 𝑢𝜃(𝑥) 作为解的逼近,参数为 𝜃 。通过自动微分(AutoDiff),网络可以自然求出 𝑢𝜃​ 的各阶导数,从而在网络定义的每个点上计算微分方程的残差。

        2. 损失函数设计

        训练模型的目标是最小化残差,使神经网络逼近满足偏微分方程的解。损失函数由两部分组成:

  • 方程残差部分:

\mathcal{L}_{\mathit{PDE}}=\frac{1}{N_{f}}\sum_{i=1}^{N_{f}}|\mathcal{N}[u_{ \theta}](x_{f}^{(i)})|^{2},

        其中, x{_{f}}^{(i)}​为采样点,用于评估微分残差。

  • 边界条件部分:

\mathcal{L}_{\mathit{BC}}=\frac{1}{N_{b}}\sum_{i=1}^{N_{b}}|\mathcal{B}[u_{ \theta}](x_{b}^{(i)})-g(x_{b}^{(i)})|^{2},

        结合整体目标函数:

\mathcal{L}(\theta)=\lambda_{f}\mathcal{L}_{\mathit{PDE}}+\lambda_{b} \mathcal{L}_{\mathit{BC}},

        这里\lambda {_{f}} 、\lambda {_{b}}为调节系数。

        3. 自动微分(AutoDiff)技术

        深度学习框架如TensorFlow或PyTorch提供自动微分功能,方便快速计算神经网络输入的微分,自动应用链式法则求导,极大简化偏微分方程的数值差分表达。

        4. 训练优化方法

        利用成熟的梯度下降(SGD)、Adam等优化算法,通过反向传播调节神经网络参数,使损失函数达到最小。

        5. 样本生成和采样策略

  • 采样点生成:采用随机采样、拉丁超立方(Latin Hypercube Sampling)或网格采样来选取训练点。
  • 自适应采样:在训练过程中,根据误差分布调整采样点,提高训练效率。

        6. 复杂边界与几何的处理

        采用非结构化的几何描述和SDF(Signed Distance Function)结合,保证不同几何形状的灵活支持。

        7. 逆问题与数据融合

        在已知数据集上引入数据损失,使模型不仅满足PDE,也通过端到端训练实现数据匹配,增强实际适用性。


五、代码详解

        DeepXDE 多保真度函数拟合示例代码注解
        这段代码展示了如何使用 DeepXDE 库来训练一个多保真度神经网络模型,用于同时利用低保真度和高保真度函数数据。下面是详细的代码注解:

"""Backend supported: tensorflow.compat.v1"""
# 这行注释说明了支持的后端框架,仅支持 TensorFlow 1.x 兼容模式

import deepxde as dde
import numpy as np


def func_lo(x):
    A, B, C = 0.5, 10, -5
    return A * (6 * x - 2) ** 2 * np.sin(12 * x - 4) + B * (x - 0.5) + C
# 定义低保真度函数:
# - 是高保真度函数的一个变形版本,加入了线性项和常数项
# - A=0.5 是高保真度函数的缩放系数
# - B=10 是线性项系数
# - C=-5 是常数项


def func_hi(x):
    return (6 * x - 2) ** 2 * np.sin(12 * x - 4)
# 定义高保真度函数:
# - 这是我们真正想要拟合的目标函数
# - 是一个非线性函数,包含二次项和正弦函数


geom = dde.geometry.Interval(0, 1)
# 定义问题的几何域为区间 [0, 1]

num_test = 1000
# 设置测试样本数量为1000

data = dde.data.MfFunc(geom, func_lo, func_hi, 100, 6, num_test)
# 创建多保真度函数数据对象:
# - 在定义的几何域内
# - 指定低保真度函数 func_lo
# - 指定高保真度函数 func_hi
# - 100 表示低保真度数据点的数量
# - 6 表示高保真度数据点的数量
# - num_test 表示测试数据点的数量

activation = "tanh"
# 设置激活函数为双曲正切函数

initializer = "Glorot uniform"
# 设置权重初始化方法为 Glorot 均匀分布初始化(也称为 Xavier 初始化)

regularization = ["l2", 0.01]
# 设置 L2 正则化,权重为 0.01,用于防止过拟合

net = dde.nn.MfNN(
    [1] + [20] * 4 + [1],
    [10] * 2 + [1],
    activation,
    initializer,
    regularization=regularization,
)
# 创建多保真度神经网络 (MfNN) 模型:
# - 第一个参数 [1] + [20] * 4 + [1] 定义了主网络(高保真度)的结构:
#   输入层1个节点,4个隐藏层各20个节点,输出层1个节点,即 [1, 20, 20, 20, 20, 1]
# - 第二个参数 [10] * 2 + [1] 定义了分支网络(低保真度)的结构:
#   2个隐藏层各10个节点,输出层1个节点,即 [10, 10, 1]
# - 使用 tanh 激活函数
# - 使用 Glorot uniform 初始化方法
# - 应用 L2 正则化

model = dde.Model(data, net)
# 将数据集和神经网络组合成一个完整的模型

model.compile("adam", lr=0.001, metrics=["l2 relative error"])
# 编译模型:
# - 使用 Adam 优化器
# - 学习率设为 0.001
# - 评估指标为 L2 相对误差

losshistory, train_state = model.train(iterations=80000)
# 训练模型,迭代 80000 次,并返回损失历史和训练状态

dde.saveplot(losshistory, train_state, issave=True, isplot=True)
# 保存并绘制训练过程中的损失和指标变化:
# - issave=True 表示保存训练历史到文件
# - isplot=True 表示生成可视化图表

        代码功能总结
        这段代码实现了以下功能:

1. 定义了两个函数:低保真度函数和高保真度函数
2. 在区间 [0, 1] 上生成多保真度数据:100个低保真度数据点和6个高保真度数据点
3. 构建一个多保真度神经网络模型,包括一个主网络(处理高保真度数据)和一个分支网络(处理低保真度数据)
4. 使用 Adam 优化器训练模型,迭代80000次
5. 保存训练历史并生成可视化图表
        多保真度学习的核心思想是:通过大量的低成本低保真度数据和少量的高成本高保真度数据,来训练一个能够准确预测高保真度结果的模型。在这个例子中,我们只使用了6个高保真度数据点,但通过结合100个低保真度数据点,可以有效地提高模型的预测精度。这种方法在计算成本高昂的领域(如物理模拟、工程设计等)特别有用。


六、总结与思考

        DeepXDE作为深度偏微分方程求解的先进工具,展现出强大的学术研究与工程应用潜力。其基于自动微分的深度学习框架,使得复杂偏微分方程在高维、多几何场景下的求解变得更为高效、灵活。相比传统数值方法,DeepXDE具有架构简单、扩展性强、支持数据融合等优点,极大地拓展了偏微分方程的应用边界。

        然而,深度学习方法仍面临一些挑战,比如训练的不稳定性、超参数调优的复杂性、理论基础的逐步完善等。未来,随着硬件性能的提升、算法的不断创新,DeepXDE有望在更高维度、更复杂的物理场景中表现出更强的竞争力。

        在科学研究中,DeepXDE不仅是验证创新理论的实验平台,更是推动工程实践创新的桥梁。从基础数学模型到端到端的数据驱动建模,深度偏微分方程代表了科学计算的未来方向。我们应积极探索其潜力,推动其在实际问题中的落地,为解决复杂系统的大规模仿真提供更强的工具。


【作者声明】

        本文为个人原创内容,基于对DeepXDE开源项目的学习与实践整理而成。如涉及引用他人作品,均注明出处。转载请注明出处,感谢关注。


 【关注我们】

        如果您对神经网络、群智能算法及人工智能技术感兴趣,请关注【灵犀拾荒者】,获取更多前沿技术文章、实战案例及技术分享!

PyTorch中的物理-informed神经网络PINN)是一种结合了深度学习和偏微分方程求解技术的方法。对于给定的抛物方程 \(u_t - u_{xx} = f\),其中\(f\)是一个已知的函数,初始条件 \(u(x, 0) = 0\),以及边界条件(例如, Dirichlet 或 Neumann 边界条件),我们可以构建一个简单的PINN模型来训练。 以下是一个简化的代码示例,演示如何使用PyTorch创建一个基本的PINN来解决这个问题: ```python import torch from torch import nn class PhysicsInformedNN(nn.Module): def __init__(self, input_size, hidden_size=32): super(PhysicsInformedNN, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, 1) def forward(self, x): # 这里x应该包含时间t和空间坐标x t, x = x[:, 0], x[:, 1:] u = torch.tanh(self.fc1(torch.cat((t, x), dim=-1))) # 使用tanh激活函数 u_t = torch.autograd.grad(outputs=u.sum(), inputs=x, create_graph=True)[0][:, 0] # 计算u关于x的导数 u_xx = torch.autograd.grad(outputs=torch.autograd.grad(outputs=u.sum(), inputs=x, create_graph=True)[0].sum(), inputs=x, create_graph=True)[0][:, 1:] # 计算u_xx return u, u_t, u_xx model = PhysicsInformedNN(input_size=2) # 输入大小为(t, x) # 假设loss_func为损失函数,如MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 定义训练循环 def train_step(u_pred, t, x, f): u, u_t, u_xx = model(torch.cat([t.unsqueeze(-1), x], dim=-1)) data_loss = loss_func(u_pred, u) # 如果f已知,可以用f替换u_pred eqn_loss = loss_func(u_t + u_xx - f, torch.zeros_like(u)) # 方程误差 total_loss = data_loss + eqn_loss optimizer.zero_grad() total_loss.backward() optimizer.step() return total_loss.item() # 使用随机数据初始化并训练 t_train, x_train = torch.rand(size=(batch_size, 1)), torch.rand(size=(batch_size, input_size-1)) # 假设batch_size为所需样本数量 u_true = ... # 获取真实解作为目标值 for _ in range(num_epochs): # num_epochs是训练次数 loss = train_step(u_true, t_train, x_train, f_train) print(f"Epoch {_:>4}/{num_epochs}: Loss = {loss}") ``` 注意,这只是一个基础示例,并未包含完整的训练过程和损失函数的选择。实际应用中可能需要调整网络结构、优化器设置、损失函数计算等细节,以及添加合适的正则化以提高模型性能。同时,真实的训练数据和边界条件需要根据具体问题提供。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值