二分图定义
无向图的节点可划分为两个不相交的非空集合(A 和 B)。
同一集合内的节点之间没有边相连,所有边均连接 A 和 B 中的节点。
定理
二分图不存在奇环(长度为奇数的环)。
原因:每条边需交替跨越两个集合,只有经过偶数条边才能回到原集合。
染色体判定
用两种颜色标记节点,规则如下:
若某节点标记为颜色 1,其相邻节点必须标记为颜色 2,反之亦然。
若染色过程中出现相邻节点颜色相同,则存在奇环,图不是二分图。
实现方法:DFS 或 BFS。
模板(DFS)
#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-x))
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
using namespace std;
int n,color[10010],m,x=0,y=0;
vector<int>vt[10010];
int dfs(int u,int v)
{
color[u]=v;
for(auto x:vt[u])
{
if(!color[x])
{
if(!dfs(x,3-v))
return 0;
}
else if(v==color[x])
return 0;
}
return 1;
}
signed main()
{
IOS
int T=1;
//cin>>T;
while(T--)
{
int f=0,ans=0;
cin>>n>>m;
while(m--)
{
cin>>x>>y;
vt[x].push_back(y);
vt[y].push_back(x);
}
for(int i=1;i<=n;i++)
{
if(!color[i])
{
if(!dfs(i,1))
{
f=1;
break;
}
}
}
if(f)
cout<<"NO"<<endl;
else
cout<<"YES"<<endl;
}
return 0;
}
例题
思路
这个题其实就是求染色后的二分图,1的个数和2的个数取最小,又因为这个题不一定是一整个二分图,可能是几个小二分图拼凑起来的,所以每一次进行dfs都要取1的个数和2的个数取最小的进行累加
代码
#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-x))
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
using namespace std;
int n,color[10010],m,x=0,y=0;
vector<int>vt[10010];
int dfs(int u,int v)
{
if(v==1)
x++;
else
y++;
color[u]=v;
for(auto x:vt[u])
{
if(!color[x])
{
if(!dfs(x,3-v))
return 0;
}
else if(v==color[x])
return 0;
}
return 1;
}
signed main()
{
IOS
int T=1;
//cin>>T;
while(T--)
{
int f=0,ans=0;
cin>>n>>m;
while(m--)
{
cin>>x>>y;
vt[x].push_back(y);
vt[y].push_back(x);
}
for(int i=1;i<=n;i++)
{
x=0,y=0;
if(!color[i])
{
if(!dfs(i,1))
{
f=1;
break;
}
ans+=min(x,y);
}
}
if(f)
cout<<"Impossible"<<endl;
else
cout<<ans<<endl;
}
return 0;
}