组合数、容斥原理和博弈论

求组合数I

问题描述

给定 n 组询问,每组询问给定两个整数 a,b,请你输出Cabmod(109+7)的值。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一组 a 和 b。

输出格式

共 n 行,每行输出一个询问的解。

数据范围

1≤n≤10000,1≤b≤a≤2000

输入样例

3
3 1
5 3
2 2

输出样例

3
10
1

问题分析

在这里插入图片描述

代码

#include<bits/stdc++.h>
using namespace std;
const int N=2010,MOD=1e9+7;
int c[N][N];
void init()
{
    for(int i=0;i<N;i++)
        for(int j=0;j<=i;j++)
        {
            if(!j) c[i][j]=1;
            else c[i][j]=(c[i-1][j]+c[i-1][j-1])%MOD;
        }
}
int main()
{
    int n;
    cin>>n;
    init();
    while(n--)
    {
        int a,b;
        cin>>a>>b;
        cout<<c[a][b]<<endl;
    }
    return 0;
}

求组合数 II

问题描述

给定 n 组询问,每组询问给定两个整数 a,b,请你输出Cabmod(109+7)的值。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一组 a 和 b。

输出格式

共 n 行,每行输出一个询问的解。

数据范围

1≤n≤10000,1≤b≤a≤105

输入样例

3
3 1
5 3
2 2

输出样例

3
10
1

问题分析

在这里插入图片描述

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=100010,mod=1e9+7;
int fact[N],infact[N];
int qmi(int a,int b,int p)
{
    int res=1;
    while(b)
    {
        if(b&1) res=(ll)res*a%p;
        a=(ll)a*a%p;
        b>>=1;
    }
    return res;
}
int main()
{
    fact[0]=infact[0]=1;
    for(int i=1;i<=N;i++)
    {
        fact[i]=(ll)fact[i-1]*i%mod;
        infact[i]=(ll)infact[i-1]*qmi(i,mod-2,mod)%mod;
    }
    int n;
    cin>>n;
    while(n--)
    {
        int a,b;
        cin>>a>>b;
        cout<<(ll)fact[a]*infact[b]%mod*infact[a-b]%mod<<endl;
    }
    return 0;
}

求组合数 III

问题描述

给定 n 组询问,每组询问给定三个整数 a,b,p,其中 p 是质数,请你输出 Cabmodp的值。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一组 a,b,p。

输出格式

共 n 行,每行输出一个询问的解。

数据范围

1≤n≤20,1≤b≤a≤1018,1≤p≤105,

输入样例

3
5 3 7
3 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值