自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 使用 PyTorch 实现 Kaggle 房价预测:从数据到模型的完整流程

本文介绍了使用PyTorch实现Kaggle房价预测任务的完整流程。通过数据预处理(标准化数值特征、独热编码类别特征),构建线性回归模型,并采用K折交叉验证优化模型参数。文章详细展示了从数据加载、特征处理到模型训练和评估的全过程,最终生成测试集预测结果。该方法使用对数均方根误差(logRMSE)作为评价指标,适合机器学习初学者理解端到端项目开发,为后续更复杂模型的应用打下基础。

2025-07-18 15:25:11 324

原创 揭秘人工神经元:从基础到前沿技术

脉冲神经网络(SNN)模拟生物神经元脉冲信号,低功耗特性适用于物联网。:神经网络与符号逻辑融合,提升可解释性(如知识图谱嵌入)。:模型压缩技术适配移动端设备(如 MobileNet)。:利用海量无标注数据预训练(如对比学习、掩码语言模型)。

2025-05-19 16:28:39 669

原创 朴素贝叶斯:简单高效的分类利器

朴素贝叶斯(Naive Bayes)算法是基于贝叶斯定理和特征条件独立假设的分类方法,它将实例分到后验概率最大的类中,属于生成式模型。之所以称为 “朴素”,是因为它假设特征之间相互独立,这一假设在现实中往往不成立,但朴素贝叶斯算法在许多实际问题中仍表现出较好的性能。

2025-05-14 17:13:47 398

原创 PyTorch实现感知机分类与决策边界可视化

一个简单的例子来使用PyTorch实现感知机对数据的分类,利用nn.Lierar()函数来创建感知机。结果使用图像显示更能直观看出效果。

2025-05-13 20:40:35 200

原创 超平面与核技巧:SVM核心原理全解析

数据预处理:核函数选择:处理不平衡数据:计算优化:

2025-05-11 18:37:57 1025

原创 感知器:从基础概念到深度学习的桥梁

但人工神经网络并不是生物神经网络的精确复制,而是一种功能简化的抽象,这种抽象使得模型既具有生物神经系统的某些特性,又易于在计算机上实现和训练。感知器虽然简单,但它是神经网络发展的重要起点。它的局限性(如无法解决 XOR 问题)促使了对多层网络的研究,而其核心思想 —— 通过加权求和和非线性变换进行信息处理 —— 至今仍是深度学习的基础。感知器的学习算法本质上是在寻找一个能将正负样本分开的超平面,这种几何直观性使得它易于理解。然而,实际应用中的大多数问题是非线性的,这就需要更复杂的模型结构和训练方法。

2025-05-10 19:48:41 655

原创 机器学习决策树

决策树是一种非常直观且实用的机器学习算法,它的核心思想类似于人类做决策的过程。通过一系列的问题(特征)来逐步缩小可能的结果范围,最终得到一个明确的结论。这种算法的优点在于它的可解释性非常强,我们可以很清楚地看到模型是如何做出决策的,这在很多领域(如医疗、金融)非常重要。决策树的构建过程中,特征选择是关键。不同的特征选择准则会导致不同的决策树生成,这也体现了决策树的灵活性。但是,决策树也很容易过拟合,特别是当树的深度过深时。这就需要我们进行剪枝处理,以提高模型的泛化能力。

2025-05-10 19:33:43 689

原创 永久使用pip国内镜像源

把准备好的阿里云的镜像源复制到记事本中就可以使用。这时候就创建好了一个pip.ini记事本。多保存几个国内镜像防止失效时不能用。在输入打开pip.ini记事本。

2025-04-26 17:01:29 228

原创 使用python画出玫瑰图

通过 pyecharts,用户可以处理和准备数据,然后使用简洁的代码生成交互式的图表,这些图表可以嵌入到 Web 应用程序中或保存为静态文件。:pyecharts 支持生成独立的网页,用户可以通过 render() 方法生成 .html 文件,并通过浏览器打开查看。:pyecharts 中的 Faker 模块可用于随机生成数据,便于用户进行示例演示或测试。:针对单个图表的配置,用户可以通过 add() 方法添加数据及配置项。:用于文本数据的可视化,突出显示高频词汇。:用于显示数据的组成部分。

2024-11-21 08:30:00 936

原创 Scrapy入门教程第一天

Scrapy 是用 Python 实现的一个为了爬取网站数据、提取结构性数据而编写的应用框架。Scrapy 常应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。通常我们可以很简单的通过 Scrapy 框架实现一个爬虫,抓取指定网站的内容或图片。首先我们要安装Scrapy框架pip install Scrapy 下载慢的可以使用国内的镜像国内镜像地址: 阿里云 http://mirrors.aliyun.com/pypi/simple/

2024-11-20 22:42:36 761 1

原创 Scrapy使用时遇到的问题之一

在安装完Scrapy框架时要切换到该项目的文件中才能运行Scrapy在控制台运行成功。使用cd +项目目录切换到你要运行的目录下运行。在当前项目的目录下能够运行成功。在当前目录下是不能运行成功的。

2024-11-19 17:41:26 521 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除