Anaconda常用命令

1、虚拟环境相关命令 

  • 创建虚拟环境

conda  create  --name  env_name

conda  create  --name  env_name python=3.5  #创建指定python版本

  • 激活/使用/进入某个虚拟环境

conda  activate  env_name

  • 退出当前环境

deactivate

  • 复制某个虚拟环境

conda create  --name  new_env_name  --clon  old_env_name

  • 删除某个环境

conda  remove  --name  env_name  --all

  • 查看当前所用环境

conda  info  --envs 或者 conda env list

  • 安装或卸载包(进入虚拟环境之后)

conda install  xxx

conda   install  xxx=版本号  #指定版本号

conda   install  xxx -i 源名称或链接  #指定下载源

conda uninstall  xxx

2、基础语法

1.pytorch的tensor与numpy

        定义numpy的二维数组:

        a = np.array([[1,2],[3,4]])

        定义二维数组张量:

        b = torch.tension([[1,2],[3,4]])

        tension张量转为numpy数组:

        c = b.numpy()

        numpy 数组转换为tensor:

        d = torch.from_numpy(c)

  2.创建pytorch的tensor

        第一种:用numpy/list 初始化创建

        用numpy初始化创建

        b=torch.from_numpy(a)

        用list初始化创建

        c = torch.tensor([2.,1.2])

        d = torch.tensor([[1,2],[3,4]])

        第二种:未初始化 创建

        e = torch.empty(1)

        f = torch.Tensor(2,3)

        第三种:随机生成 创建

         g = torch.rand(3,3)

         h = torch.randn(3,3)

        i = torch.randn_like(g)

        第四种:序列生成 创建

        j =torch.arange(0,10)

        k = torch.arange(0,10,2)

        l = torch.linspace(0,10,steps=3)

        第五种: 全零 、全一、 单位矩阵、 创建

        m = torch.ones(3,3)

        n = orch.zeros(2,3)

        o = torch.eye(4,4)

3.查看tensor属性

        a=torch.tensor([[1,2,3],[2,3,4]],dtype=torch.float)

        a.dtype  #tensor类型

        a.shape  #tensor形状

        a.size(e) #tensor第1维的大小

        a.size(1)  #tensor第2维的大小 print(a.dim()) #tensor维度大小

        a.grad) # tensor梯度

        a.device)   #tensor 所在设备

4.tensor变形

        a=torch.tensor([[1,2,3[4,5,6]],dtype=torch.float)

        "a的值:a

        a的形状:a.shape

        b = a.flatten() #拉平,就成1维tensor

        b的值:b

        b的形状:,b.shape

        c= b.reshape(2,3) #采用reshape将输入张量形状变为(1,6)

        c的值:c

        c的形状:c.shape

        d = b.view(1,6) # 采用view将输入张量形状变为(1,6)

        d的值:d

        print("d的形状:",d.shape)

        e = torch.squeeze(d) #将输入张量形状中的1去除

        e的值e

        e的形状:e.shape

5.tensor索引与切片

        索引:tensor所有元素都有编号,正索引数是从左往右,从开始;负引从右往左,从一十开始

      a=torch.tensorL[12,3].[4,5,6],[7,8,9]],dtype:torch.float) b=torch.tensor(CC10,10,10],[10,)0,10],        [10,10,10]].dtype=torchfl0at)

        a[1,2] 第2行第3列的值

        a[-1,-1] 第3行第3列的值

        a[[1],[0,2]] 第2行中第1列和第3列的值

        a>4 大于4.返回布尔类型

        aca>4] 大于4的值

        torch. wherela>s,a,b) 大于5输出a的值,否则输出b切片:提取tensor中某一范围内的元素

        a[:,o] 第1列

        a[:,-1] 第3列

        a[:0:2] 第1列和第2列

        a[0,:] 第1行

        a[-1,:] 第3行

        a[::2,::2] 步长,取行时空2个、取列时空2个

6.tensor连接和拆分

        a=torch.tensor([[1,2,3][4,5,6][7,8,9]],dtype=torch.float)

        b = torch.tensor([[10,10,10] [10,10,10][10,10,10]],dtype=torch.float)

        在给定维度上对输入的张量进行连接操作:

        a,b按行拼接:torch.cat((a,b),dim=0)

        a,b按列拼接:torch.cat((a,b),dim=1)

        沿着一个新维度对输入张量序列进行连接 在新维度拼接张量 将原始数据维度扩展一维:

        torch.stack((a,b),dim=0))

        a,b按行拼接:torch.stack((a,b),dim=0).shape

        a,b按列拼接:torch.stack((a,b),dim=1)

        a,b按列拼接:torch.stack((a,b),dim=1).shape

        按块大小拆分张量 除不尽的取余数 返回一个元组:

        torch.split(a,2,dim = 0)

        torch.split(a,1,dim.=0)

        torch.split(a,1,dim = 1)

        torch.chunk(a,2,dim = 0)

        按块数拆分张量:

        torch.chunk(a,2,dim =1)

7、换位与置换

        a=torch.tensor([[1,2,3][4,5,6][7,8,9]],dtype=torch.float)

        只接收二维Tensor:

        a.T

        torch.t(a)

        torch.transpose(a,1 0)

        接收多维Tensor:

        a.permute(1,0)

        三维的:

        c=torch.unsqueeze(a,0)

        c.shape

        c.permute(1,0l2).shape

8、Tensor 运算:

加法:可以使用 + 运算符或 torch.add() 等函数进行张量相加。

减法:可使用 - 或 torch.sub() 等。

对应元素相乘用 * 。

除法:通过 / 或 torch.div() 等操作。

对于维度大于 2 的张量(高维张量),矩阵乘法仅作用在最后两个维度上,前面的维度必须保持一致,且只能通过 torch.matmul() 操作。

9.tensor微分计算:

标量对向量求导:

x= torch.tensor([1.0,2.0,3.0,4.0,5.0],requires_grad=True,dtype=torch.float32)

print(x.requires_grad)       #输出 True

print(x.grad)print(x.grad_fn)  # tensor.grad输出张量的梯度,这里输出 None,因为目前 t 没有梯度

print(x.grad_fn)  # tensor.grad_fn指向运算生成此张量的方法,这里为 None

y= torch.sum(x ** 2)        #是岭标量,只是一个数值的tensor

y.backward()     # 利用自动微分计算微分

### Anaconda 常用命令 对于Anaconda的使用,了解其基本命令是非常重要的。以下是几个常用的`conda`命令: - 查看帮助信息可以通过 `conda -h` 或者 `conda --help` 来实现[^1]。 - 更新Conda本身可执行如下指令:`conda update conda`;这有助于保持工具链处于最新状态[^2]。 - 若要更新整个Anaconda发行版,则应运行 `conda update anaconda`。 - Python解释器及其库文件同样能通过Conda来进行升级操作,比如要更新Python到最新的次要版本号(即在同一主要版本下),则输入 `conda update python`。 - 创建新的虚拟环境时,可以指定特定名称以及安装所需的软件包版本,例如创建名为myenv并预装numpy v1.19.0的环境可以用这条语句完成: ```bash conda create --name myenv numpy=1.19.0 ``` - 当不再需要某个已存在的环境时,可通过下面的方式将其删除掉: ```bash conda env remove --name unwanted_env_name ``` - 对于单个包的操作也十分简便,如果想卸载某款应用或库,只需键入类似这样的命令即可: ```bash conda remove package_name ``` 另外值得注意的是,在很多情况下跟随在连字符后的参数允许简化书写形式——仅需保留首个字母加上前缀短横线就能代表完整的选项名。比如说`--name`能够写作`-n`来指代相同含义。 #### 示例代码片段展示如何激活新建立好的环境 ```bash source activate myenv # Linux/macOS 下激活环境的方法 activate myenv # Windows 平台下的对应做法 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值