前言:笔者对这个部分也是比较迷糊,最近正好来整理整理,依旧将其分为两个部分来完成,分为简单排序和高级排序。并对相应的算法来进行优化。同时高级排序快排由于过于麻烦会放在下一节来讲,所以这一部分将分成三个部分来讲
第一部分:简单排序:
1. 1冒泡排序
作为第一个学的算法,也是异常简单,我们对一个数组进行排序,我们进行两两比较,大的往后面放,第一次就把最大的找到了放在最后面,这样进行第二次只需要排序除去最后一个的数的数组。依次进行循环,只剩最后一个数就自然有序了:
先看初步代码:
void BubbleSort(int* a, int n)
{
for (int j = 0; j < n; j++)
{
int flag = 0;
for (int i = 0; i < n - 1 - j; i++)
{
if (a[i] > a[i + 1])
{
swap(&a[i], &a[i + 1]);
flag = 1;
}
}
if (flag == 0)
break;//如果没有进行交换就直接排除,说明依旧拍好了
}
}
在这里我们加了优化,给了一个flag,如果flag还是为0,那么说明没有发生交换,这也就代表直接进行排序好了,直接break;
最好情况(已有序)
仅需一趟遍历(比较相邻元素,无交换发生),时间复杂度为 O(n)
最坏情况(完全逆序)
需进行 n-1 趟排序,每趟比较 n-i
次(i
为趟数),总比较次数为 n(n-1)/2,时间复杂度为 O(n²) 示例:数组 [5, 4, 3, 2, 1]
需完整执行所有轮次
冒泡排序更多是为了具有教学意义。我们也不在这里浪费太多笔墨。
1.2 插入排序:
插入排序是我们今天讲的第二个排序,这个排序虽然是简单的排序,是为了引出希尔排序,这个排序还是很重要的,对于后面理解希尔排序具有深刻的意义。
插入排序很类似与打扑克,我们把手上的排看成有序,新来的排进行插入。在这里有一个数组,我们先把第一个数看作有序,分成【0,end】【end + 1,n -1 】,每次填进去一个数,先来看:
int end;
int tmp = a[end + 1];
while (end >= 0)
{
if (tmp < a[end])
{
//如果 tmp的值小于前面的值,值后移;
a[end + 1] = a[end];
end--;
}
else {
break;
}
}
a[end + 1] = tmp;//插入值
我们还不确定end值,我们来看整体:
void InsertSort(int* a, int n)
{
//先走单趟,在考虑多趟,先分割数组,[0,end][end+1 n-1]
for (int i = 0; i < n - 1; i++)
{
int end = i;
int tmp = a[end + 1];
while (end >= 0)
{
if (tmp < a[end])
{
//如果 tmp的值小于前面的值,值后移;
a[end + 1] = a[end];
end--;
}
else {
break;
}
}
a[end + 1] = tmp;
}//多趟完成
}
完成代码的初步建设,接下来进行测试,主要测试函数如下(主函数省略·,下面都是):
void InsertTest()
{
int arr[] = { 0, 14, 7,11,2,4,3,12,9 };
InsertSort(arr,sizeof(arr) / sizeof(arr[0]));
PrintArr(arr, sizeof(arr) / sizeof(arr[0]));
}
结果如上,排成升序完成,并没有出现任何错误。
情况 | 时间复杂度 | 说明 |
---|---|---|
最好情况 | O(n) | 数组已有序,每轮仅需1次比较 |
最坏情况 | O(n²) | 数组完全逆序,需 n(n-1)/2 次比较和移动 |
平均情况 | O(n²) | 随机数据,平均移动次数为 n²/4 |
空间复杂度 | O(1) | 原地排序,仅需常数额外空间 |
观察上表我们发现从理论来看好像冒泡排序似乎和插入排序差不多,其实不然,来看一组测试: |
void TestOp()
{
srand(time(0));//时间做戳,生成随机数
const int N = 100000;//接下来就不改变N的值了
int* a1 = (int*)malloc(sizeof(int) * N);
int* a2 = (int*)malloc(sizeof(int) * N);
int* a3 = (int*)malloc(sizeof(int) * N);
int* a4 = (int*)malloc(sizeof(int) * N);
int* a5 = (int*)malloc(sizeof(int) * N);
for (int i = 0; i < N; i++)
{
a1[i] = rand() + i;
a2[i] = a1[i];
a3[i] = a1[i];
a4[i] = a1[i];
a5[i] = a1[i];
}
//相同的数组作比较才有意义哦
int start1 = clock();
ShellSort(a1,N);
int end1 = clock();
int start2 = clock();
InsertSort(a2,N);
int end2 = clock();
int start3 = clock();
//InsertSort(a2, N);
int end3 = clock();
int start4 = clock();
//InsertSort(a2, N);
int end4 = clock();
int start5 = clock();
BubbleSort(a5, N);
int end5 = clock();
printf("ShellSort:%d\n", end1 - start1);
printf("InsertSort:%d\n", end2 - start2);
printf("ShellSort:%d\n", end3 - start3);
printf("ShellSort:%d\n", end4 - start4);
printf("BubbleSort:%d\n", end5 - start5);
}
上面的测试内容没有进行很好的改变,只需要看我们要测试的结果就ok了。
只需要关注BubbleSort和InsertSort就行了,发现冒泡排序还是和插入排序还是很有区别的,虽然他们的最长耗时都是O(n²),最好都是O(n);
1.3 选择排序:
选择排序也是很好的一门思想,主要是为了引出堆排序,在上上章中我们已近介绍了,这里我们将重新回顾,首先来看选择排序:
我们先遍历数组,找到最大的和最小的进行,将max和end进行交换,然后交换min和begin进行交换,大致思路如此,我们先来写代码看看有没有什么注意的思路:
第一版代码如下:
void swap(int* a, int* b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}
void SelectSort1(int* a, int n)
{
//选择排序,先遍历数组,找出最大的和最小的
int begin = 0;
int end = n - 1;
while (begin < end)
{
int max = end;
int min = begin;//记录下标ok了
for (int i = begin; i < end + 1; i++)
{
if (a[i] > a[max])
max = i;
if (a[i] < a[min])
min = i;
}
swap(&a[max], &a[end]);
swap(&a[min], &a[begin]);
end--;
begin++;
}
}
乍一看似乎没有什么错误,但是我们细细想想还是有不少问题的,首先是最小值如果刚好是end,但是你先换了end和max,那么不就导致后续的操作失误,那么我们就继续改进:
void SelectSort1(int* a, int n)
{
//选择排序,先遍历数组,找出最大的和最小的
int begin = 0;
int end = n - 1;
while (begin < end)
{
int max = end;
int min = begin;//记录下标ok了
for (int i = begin; i < end + 1; i++)
{
if (a[i] > a[max])
max = i;
if (a[i] < a[min])
min = i;
}
swap(&a[max], &a[end]);
if (min == end)
{
swap(&a[max], &a[begin]);
}
else {
swap(&a[min], &a[begin]);
}
end--;
begin++;
}
}
在这里我们完善了这段代码,但是还是不好看,逻辑冗余,而且操作复杂,虽然几轮测试下来没有问题,我们来改善这段代码,从命名和最后的逻辑来看:
void SelectSort(int* a, int n)
{
int begin = 0;
int end = n - 1;
while (begin < end)
{
int max_i = begin;
int min_i = begin;//两个小标都放在 begin
for (int i = begin; i < end + 1; i++)
{
if (a[i] > a[max_i])
max_i = i;
if (a[i] < a[min_i])
min_i = i;
}
swap(&a[min_i], &a[begin]);
if (max_i == begin)
max_i = min_i;
swap(&a[max_i], &a[end]);
begin++;
end--;
}
}
这样就清楚很多了,更加符合操作的规矩,逻辑也更加清楚。
接下来完成测试:
void SelectTest()
{
int arr[] = { 0, 14, 7,11,2,4,3,12,9 };
SelectSort(arr, sizeof(arr) / sizeof(arr[0]));
PrintArr(arr, sizeof(arr) / sizeof(arr[0]));
}
我们在这里完成对以上简单算法的测试,接下来看一组数据作为下一章的预告:
可以看到差距还是很大的