2篇6章4节:认识比例风险模型和Cox比例风险模型,学会从协变量的调整选择最优模型

在生存分析中,Cox比例风险模型(Cox Proportional Hazards Model)是用于评估多个协变量对生存时间影响的强大工具。它不仅能够处理删失数据,还可以分析多因素对事件发生的相对风险。通过构建不同的Cox回归模型,并使用统计方法如anova()和AIC准则对协变量进行调整与比较,我们可以有效选择出最优模型,确保研究的准确性和模型的合理性。这一过程有助于更深入地理解各协变量对生存结果的影响,从而优化研究结论。

一、认识比例风险模型Cox比例风险模型

1、比例风险模型

比例风险模型(Proportional hazards model是一种常见的生存分析的方法,用于研究某个事件(比如疾病发生、设备失效等)发生的时间与一些可能影响这个时间的因素(称为协变量)之间的关系。简单来说,比例风险模型可以帮助我们理解不同因素如何影响事件发生的风险。

生存分析通常由两个部分组成:基础风险函数(用 λ₀(t) 表示):这部分描述了在特定时间点上,事

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MD赋能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值