在生存分析中,Cox比例风险模型(Cox Proportional Hazards Model)是用于评估多个协变量对生存时间影响的强大工具。它不仅能够处理删失数据,还可以分析多因素对事件发生的相对风险。通过构建不同的Cox回归模型,并使用统计方法如
anova()
和AIC准则对协变量进行调整与比较,我们可以有效选择出最优模型,确保研究的准确性和模型的合理性。这一过程有助于更深入地理解各协变量对生存结果的影响,从而优化研究结论。
一、认识比例风险模型Cox比例风险模型
1、比例风险模型
比例风险模型(Proportional hazards model)是一种常见的生存分析的方法,用于研究某个事件(比如疾病发生、设备失效等)发生的时间与一些可能影响这个时间的因素(称为协变量)之间的关系。简单来说,比例风险模型可以帮助我们理解不同因素如何影响事件发生的风险。
生存分析通常由两个部分组成:基础风险函数(用 λ₀(t) 表示):这部分描述了在特定时间点上,事