自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 python数据挖掘分析 互联网公司人力资源指标 (下)

本文基于Python对某互联网公司14,999条员工数据进行人力资源分析。通过pandas和matplotlib等工具,从人力结构和运作两个维度展开研究:在结构方面分析岗位分布、教育背景等;在运作方面重点考察离职率(全公司24.71%,人力资源部门最高)和内部变动情况(市场部迁出最多,运营部迁入最多)。分析发现迁入销售、技术等人力资源部门的员工离职率达40%,建议深入调查岗位适配性等问题。研究展示了Python在人力数据分析中的高效应用,为管理层提供了数据支持的人力资源决策依据。

2025-08-11 18:03:11 470

原创 python数据挖掘分析 互联网公司人力资源指标 (上)

本文基于Python对某互联网企业14,999条员工数据进行人力资源分析。通过pandas和matplotlib等工具,从结构维度(岗位、管理层级、学历、年龄)和运作维度(离职率)展开研究。主要发现:销售(26.48%)和技术(20.58%)部门人数最多;管理层占比9.72%偏低,P1/P4层级人才不足;本科占53.85%,高学历者均匀分布;员工年龄集中在24-25岁(53.25%),30岁以上仅占3.8%。分析结果为企业人才结构优化提供了数据支持。

2025-08-11 17:04:47 598

原创 python数据分析及可视化项目(老王大药房数据)

本文介绍了一个基于Python的O2O药店数据分析项目。项目通过Pandas对1.4万条订单数据进行分析,重点包括:1)数据预处理(合并城市-门店表、转换时间格式、添加时段字段);2)核心分析指标(分平台/城市/时段的订单数量与金额统计);3)可视化展示(使用Matplotlib绘制柱状图和饼图)。分析结果显示不同平台、城市和时段的销售差异,为药店运营决策提供数据支持。项目完整展现了从数据清洗到分析可视化的全流程。

2025-08-10 15:47:03 821

原创 python数据清洗(葡萄酒品尝评分表)

本文介绍了葡萄酒品尝评分数据的完整清洗流程。首先概述数据清洗的重要性,指出常见问题如异常值、格式不一致等。然后详细演示使用Python的Pandas库处理红葡萄酒和白葡萄酒评分数据,包括数据加载、无效数据处理、缺失值填充(纵向和横向填充)、样品编号标准化、列名重命名等核心步骤。最后将清洗后的红白葡萄酒数据合并并保存为CSV文件。通过系统化的清洗流程,原始数据被转化为结构清晰、质量可靠的标准化数据集,为后续分析奠定基础,体现了数据清洗在数据分析中的关键价值。

2025-08-09 16:26:46 1093

原创 python数据清洗及可视化(姓氏区县数据)

本文详细介绍了姓氏区县数据的清洗、分析和可视化流程。通过Python的pandas和matplotlib库,首先对原始数据进行合并、去重和异常值处理;然后使用正则表达式提取省、市、区县三级行政区划信息;最后对Top20姓氏进行频次统计和可视化展示。文章重点阐述了数据清洗的关键步骤,包括处理特殊字符、剔除非姓氏数据、行政区划提取等,并提供了完整的代码实现。特别强调了数据清洗的重复性和可视化中的双轴图表技巧,为数据分析初学者提供了完整的学习范例。

2025-08-08 22:45:06 1300

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除