排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较.
问题分析和总体设计
ADT OrderableList{
数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0}
数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n}
基本操作:
InitList(n)
操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。
Randomizel(d,isInverseOrser)
操作结果:随机打乱
BubbleSort( )
操作结果:进行起泡排序
InserSort( )
操作结果:进行插入排序
SelectSort( )
操作结果:进行选择排序
QuickSort( )
操作结果:进行快速排序
HeapSort( )
操作结果:进行堆排序
ListTraverse(visit( ))
操作结果:依次对L种的每个元素调用函数visit( )
}ADT OrderableList
待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,
对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.
要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果.
要求对结果进行分析.
详细设计
1、起泡排序
算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好
bubblesort(struct rec r[],int n)
{
int i,j;
struct rec w;
unsigned long int compare=0,move=0;
for(i=1;i<=n-1;i++)
for(j=n;j>=i+1;j--)
{
if(r[j].keyr[k].key) {k=j; compare++; }
w=r[i];
r[i]=r[k];
r[k]=w;
move=move+3;
}
}
printf("/nSelectSort compare= %ld,move= %ld/n",compare,move);
}
4、快速排序
算法:首先检查数据列表中的数据数,如果小于两个,则直接退出程序。如果有超过两个以上的数据,就选择一个分割点将数据分成两个部分,小于分割点的数据放在一组,其余的放在另一组,然后分别对两组数据排序。
通常分割点的数据是随机选取的。这样无论你的数据是否已被排列过,你所分割成的两个字列表的大小是差不多的。而只要两个子列表的大小差不多
q(struct rec r[],int s,int t)
{
int i=s,j=t;
if(si&&r[j].key>=r[0].key)
{j--;
++a; }
if(i=1;i--) a=sift(r,i,n);
compare++;
move++;
for(i=n;i>=2;i--)
{
w=r[i];
r[i]=r[1];
r[1]=w;
a=sift(r,1,i-1);
compare+=a;
move+=a;
}
}
小结:
1.学会使用随机函数randomize( ) 为数组赋初值要在头文件中添加#include
2.在做此程序之前基本上是在理解了各种排序过程以后完成的
3.对排序算法的总结:
(1)若n较小(如n≤50),可采用直接插入或直接选择排序。
当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
(2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
(3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;
堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。
内部排序算法比较
最新推荐文章于 2024-06-06 09:35:49 发布