作者简介:
高科,先后在 IBM PlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。
并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业,消防等领域的工业化产品),合作开发商业性游戏
(谢谢你的关注)
=====================================================================
目录
关于皮肤病诊断的数据集说明
目前,人工智能和机器学习技术正在应用于皮肤病的诊断。一些研究团队已经开发出了基于深度学习的皮肤病诊断系统,这些系统可以通过输入患者的皮肤图像进行分析和诊断。
然而,这些系统仍处于研究和开发阶段,尚未在临床实践中得到广泛应用。因此,对于皮肤病的诊断,仍然需要依赖专业医生的经验和判断。这里我提供了皮肤病诊断 粉刺,脱发,湿疹,麻风,黄褐斑,银屑病,癣红斑,痤疮,脂溢性角化病,皮肤癌,荨麻疹,血管肿瘤,疣,白癜风 等包含YOLOV,COCO,VOC三种标记的数据集 17673总图像数。
关于数据集的内容
数据集分割
在机器学习和深度学习中,常常会将数据集分为训练集(train set)、测试集(test set)和验证集(validation set)三部分。
训练集(train set)是用于模型的训练的数据集。在训练过程中,模型通过学习训练集中的样本来调整自己的参数,以使其能够更好地对未知数据进行预测。训练集通常是最大的数据集,因为越多的数据可以提供更多的信息和更好的训练效果。
测试集(test set)是用于评估模型的泛化能力的数据集。在模型训练完成后,使用测试集中的样本来评估模型的性能,判断模型在未知数据上的表现。测试集应该是独立于训练集的,以确保对模型进行正确的评估和比较。
验证集(validation set)用于调整模型的超参数,如学习率、正则化参数等。在训练过程中,通过在验证集上评估模型的性能,可以选择最优的超参数组合,从而改善模型的泛化能力。与测试集一样,验证集也应该是独立于训练集的,以确保调整的超参数不会对模型的性能造成过拟合。
预处理
增强
数据集类型和标签说明
部分皮肤病的检测可以通过肉眼观察病症表现,如红斑痤疮和疣。检测人员可以通过观察皮肤的颜色、形状、大小等特征来判断病症的类型和严重程度。
荨麻疹湿疹等一些皮肤病的检测可以通过皮肤敏感试验来进行。在敏感试验中,医生会在皮肤上涂抹一些可能引起过敏反应的物质,观察皮肤的反应来确定是否患有该病。
对于疣等病症,医生可能需要进行活检,通过取一小块组织来进行检测。这样可以更准确地确定病症的类型和性质。
这里我罗列了下常见的几种皮肤病和对应的标签信息,提供大家参考:
红斑痤疮

疣

荨麻疹

湿疹

藓

皮肤癌

血管肿瘤

脱发

黄褐斑
血管瘤
皮肤癌
银屑病
粉刺
白癜风
数据集下载
通过网盘分享的文件:皮肤病检测YOLO
链接: https://pan.baidu.com/s/1ZHjpryVRwxeccl61RZT04g
或通过 https://download.csdn.net/download/pbymw8iwm/90047150 下载