Artificial Intelligence

Category: Amazon Q Developer

Building AIOps with Amazon Q Developer CLI and MCP Server

In this post, we discuss how to implement a low-code no-code AIOps solution that helps organizations monitor, identify, and troubleshoot operational events while maintaining their security posture. We show how these technologies work together to automate repetitive tasks, streamline incident response, and enhance operational efficiency across your organization.

Containerize legacy Spring Boot application using Amazon Q Developer CLI and MCP server

In this post, you’ll learn how you can use Amazon Q Developer command line interface (CLI) with Model Context Protocol (MCP) servers integration to modernize a legacy Java Spring Boot application running on premises and then migrate it to Amazon Web Services (AWS) by deploying it on Amazon Elastic Kubernetes Service (Amazon EKS).

Modern agricultural drone and ground sprayer maintaining curved crop rows showcasing precision farming technology

Accelerating data science innovation: How Bayer Crop Science used AWS AI/ML services to build their next-generation MLOps service

In this post, we show how Bayer Crop Science manages large-scale data science operations by training models for their data analytics needs and maintaining high-quality code documentation to support developers. Through these solutions, Bayer Crop Science projects up to a 70% reduction in developer onboarding time and up to a 30% improvement in developer productivity.

Build AWS architecture diagrams using Amazon Q CLI and MCP

In this post, we explore how to use Amazon Q Developer CLI with the AWS Diagram MCP and the AWS Documentation MCP servers to create sophisticated architecture diagrams that follow AWS best practices. We discuss techniques for basic diagrams and real-world diagrams, with detailed examples and step-by-step instructions.