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1. ABSTRACT 

Implantation in humans is a multistep 

process that involves apposition, adhesion, and 

invasion of the developing blastocyst into the 

receptive maternal endometrium. Though significant 

volume of research in this direction has identified 

important players orchestrating this delicate process, 

there are still gaps in our understanding of all the 

sequence of events during embryo implantation. 

Also, the early pregnancy-related complications that 

lead to fetal loss and miscarriage often occur in this 

critical window of implantation, which is primarily 

defined as the time when the maternal endometrium 

is supposed to be most receptive to the free 

blastocyst that emerges out from the zona pellucida. 

Studies in humans and rodents have identified 

several mediators like folliculin, LIF, IL11Rα, splicing 
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factor SC35, etc. to be essential for early 

implantation. Trophoblasts, that form the outer 

epithelial layer of the blastocyst, participate in the 

formation of the placenta. During placentation, 

invasive extravillous trophoblasts (EVTs), migrate 

into the endometrium, and a transient epithelial to 

mesenchymal transition (EMT) and remodel the 

uterine arteries for blood and nutrient exchange. 

2. INTRODUCTION 

Trophoblast cells are derived from the outer 

trophoectodermal layer of the developing blastocysts 

as a part of the outer cell mass that eventually forms 

the placenta (1). These cells help in establishing cell 

to cell interactions that eventually secure and anchor 

the blastocysts into the uterus (2) 

In humans, the blastocyst “hatches” out of 

the protective zona pellucida approximately after five 

days, which facilitates the blastocyst adhesion to the 

uterine endometrium, thereby gaining access to the 

maternal cytokine and nutrient milieu (3). Through a 

process called zona hatching, the embryo is released 

from the blastocyst. The cells on the outer side of 

blastocyst become trophectoderm, which 

differentiates into chorion, forming the future placenta 

while the inner cell mass becomes the embryo. This 

process is the first step towards embryogenesis and 

often subjected to precision control both by the 

maternal as well as embryonic factors. This process 

is followed by a strictly controlled differentiation 

program of the trophoblast that gives rise to multiple 

lineages of cells with diverse functions (4). An 

inherent capacity of pseudo-malignant trophoblast 

cells is to invade the maternal endometrium, during 

which they seem to manifest EMT. However, what is 

spectacular is that unlike cancer, these invasive 

maneuvers are mostly transient and self–limiting (5). 

It is, therefore, safe to conclude that EMT forms an 

essential component of the trophoblast invasion 

program lack of which could result in serious 

complications. In this review, we use the word 

“EMTiness” to denote transient EMT behavior of the 

trophoblast cells. 

First-trimester mononucleated cytotro-

phoblast (CTB) with stem cell-like properties undergo 

lineage commitment through differentiation into 

different trophoblast cell types (6). While the STB of 

the floating villi are engaged in nutrient and gas 

exchange, villi that comes in contact and attach to the 

maternal decidua the anchoring villi forms the 

cytotrophobast cell coloumn. While the proximal cells 

of these coloumn can proliferative, they loose their 

mitotic activity when they differentiate distally. These 

are the cells that eventually leave the cell column , 

assume invasive nature and invade the endometrium 

forming iCTB( instersitial cytrophoblast). This 

population seems to arise from an anchorage-

dependent epithelial phenotype of trophoblast cells of 

the trophoblast cell columns into a mesenchymal-like 

invasive extravillous trophoblasts (8). These events 

are crucial for the development of the feto-maternal 

interface, which in turn, promotes fetal survival. 

Numerous studies have shown that differentiation of 

the first-trimester cytotrophoblast to extravillous 

trophoblast requires an EMT like process that 

transforms these cells into highly invasive interstitial 

trophoblasts (9). In this review, we compared the 

epithelial-mesenchymal characteristics of the CTBs 

and EVTs to the malignant cancers and addressed 

the overlapping denominators between the two 

invasive systems. Besides, this review also focused 

on multiple facets of this multifunctional system, 

along with any associated pathology. 

Research in this area is primarily driven by 

the information gathered from rodent models. 

Though there are some functional similarities 

between the human and mice placenta; anatomically, 

they have several species-specific differences (6). 

For example, in mice, we see a discoid placenta with 

a single cotyledon, whereas human placenta has 

multiple cotyledons, consolidated into a single cluster 

(6). Further, the trophoblast layer covering the 

placental villi is different in humans and mice. While 

in mice, three trophoblast cell layers (tri-chorial 

containing two syncytial layers) comes in direct 

contact with maternal blood-forming hemochorial 

placenta, in humans, we just have one syncytial layer 

covering the cytotrophoblast (6). Trophoblast cells 

undergo differentiation along different lineages to 

take over the varied function of the placenta. 

Abnormal trophoblast differentiation seems to be 

responsible for several placenta related pregnancy 

complications like fetal growth restriction, pre-

eclampsia etc. 
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3. TROPHOBLAST DIFFERENTIATION AND 

TROPHOBLAST EXTRACELLULAR MATRIX 

(ECM) INTERACTION 

3.1. Trophoblast differentiation program 

Trophoblasts are the first of the few cells 

that initiate an elaborate differentiation program. 

Mononucleated CTBs with stem cell-like properties 

spontaneously fuse to form multinucleated 

syncytiotrophoblasts (4). At about seven days post-

fertilization, the trophoblasts interact with the 

maternal endometrium for implantation, leading to 

the formation of anchoring chorionic villi. 

Subsequently, the unique structure of the feto-

maternal interface is established by the differentiation 

of these stem cell-like CTBs into the anchoring villi 

(10). An in-depth electron microscopic study by 

Enders et al. (2001) of the anchoring villi from the first 

trimester placentae of species such as macaque and 

humans showed that while anchoring villi of macaque 

were elongated cell columns, e those from the 

humans showed ECM components between the CTB 

cells (Enders et al., 2001). It was observed and later 

confirmed that maternal fibrillin from the ECM helps 

to strengthen the anchoring villi in addition to 

preventing the maternal cells from migrating into the 

trophoblastic shell (11). 

Peripheral trophoblasts cells that form the 

tips of anchoring villi help to attach the placenta to the 

uterine endometrium (12,13). The formation of 

anchoring villi is the prerequisite for several 

subsequent events. These anchoring villi give rise to 

a specialized trophoblast population that displays 

migratory properties enabling them to invade and 

colonize into the maternal interstitium of the decidua. 

Furthermore, an additional differentiated lineage of 

the trophoblast emerges out of the anchoring villi 

during the first few weeks of pregnancy (14). While 

few differentiated trophoblast lineages migrate 

towards the uterine stroma from the placental base, 

yet another class of trophoblast undergoes a process 

wherein single cells of CTB fuses to form 

multinucleated syncytiotrophoblasts (14). The CTB 

fusion with the overlying syncytiotrophoblast is a 

continuous process during the lifetime of the placenta 

(15-17). It is an effective mechanism that replenishes 

the syncytiotrophoblast with the essential nutrients 

from the fusing CTBs. A dynamic equilibrium is 

established to maintain this delicate stoichiometry, 

which is based on the release of apoptotic fragments 

from these fused syncytiotrophoblasts into maternal 

blood. Interestingly, trophoblast fusion is 

orchestrated by numerous autocrine, paracrine, 

endocrine, and juxtracrine factors, such as fusion 

proteins, ECM components, hormones, cytokines, 

and caspases (18-22) derived both from maternal as 

well as fetal poles. Mi et al. reported a retroviral 

envelope captured protein, known as syncytin, 

expressed in the placenta; it directs the trophoblast 

fusion (23). Recent studies showed that RNA binding 

proteins, LIN28A/B, are associated with this fusion 

process and syncytium formation (24,25). Another 

review by Finley et al. (25) pointed out that cellular 

stress in the form of reactive oxygen species (ROS) 

generation, nutrient deprivation, or stress hormones 

trigger the transposable elements through AMPK 

activation, which in turn, propagate the trophoblast 

differentiation process (26,27). Further intracellular 

mediators, such as Kruppel-like factor 6 (KLF6), a 

transcription factor expressed in the human placenta, 

were also found to be associated with this fusion 

process (27-29). siRNA-mediated knockdown of 

KLF6 hindered the cell-cell fusion in the human 

placenta-derived BeWo cell line along with a 

decreased expression of the fusogenic protein 

syncytin-1. Liempi et al. proposed that Typasnsoma 

cruzi, which causes Chagas disease, is associated 

with trophoblast fusion. T. cruzi induces trophoblast 

differentiation that elevates the trophoblast turnover 

(29). This phenomenon might have evolved as a 

protective antiparasitic mechanism. In addition to an 

elaborate differentiation process, trophoblasts exhibit 

a complex cross-talk with the surrounding 

environment that could provide critical developmental 

cues (30-31).  

3.2. Trophoblast-ECM interactions 

Trophoblast differentiation is under a 

complex regulatory circuitry. Several factors that 

regulate trophoblast differentiation are derived from 

both fetal as well as maternal sides. Trophoblast 

differentiation leading to cell fusion generates the 

multinucleated syncytium, as well as invasive 

trophoblast cell clusters migrating into the maternal 

endometrium. These invasive populations, known as 
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extravillous cytotrophoblast (EVT are in turn derived 

from the trophoblast cell columns as part of the 

anchoring villi. The villous counterpart (vCTB) is 

essentially non-invasive and forms a part of floating 

villi that are primarily engaged in feto-maternal gas 

and nutrient exchange (10). Throughout pregnancy, 

the primary villi change into secondary villi that are 

transformed into tertiary villi. This ramification of the 

villus system is crucial for effective feto-maternal 

dialog (32). The steps in trophoblast differentiation 

involve making contact with and invading the 

endometrium. The components of ECM effectuate 

this process through adhesion, migration, and 

differentiation speculated to be regulated by cell 

surface receptors, called integrins (33,34). The cell 

adhesion integrins are heterodimeric transmembrane 

glycoproteins composed of α and β subunits that act 

as receptors for the ECM and participate in cell-cell 

and cell-substratum interactions (35). Mammalian 

genomes encode about 18 α and 8 β subunit genes, 

resulting in 24 α-β combinations (Figure 1) (36). 

Integrins are also involved in cell signaling and 

regulation of cell invasion, differentiation, migration, 

survival, and growth (37). The activation of these 

signaling pathways modulates the cell morphology, 

motility, proliferation, survival, and cell-type-specific 

gene expression (38-41). vCTB and EVT express 

different integrin classes depending on their functions 

(41-43). vCTB predominantly expresses a6ß4 

integrin that plays an important role in anchoring the 

trophoblast to the basement membrane. It is 

speculated that its gradual loss may play a role in 

facilitating the trophoblast cells to migrate into the 

maternal compartment (37). Damsky et al (45) 

reported that a switch in cell surface integrin 

repertoire is necessary to execute the trophoblast 

invasive programme (37). This involves a 

downregulation in alpha 6 integrins in invasive 

cytotrophoblast (CTB) with an upregulation of alpha 

5 beta 1 and alpha 1 beta 1 integrins (45). However, 

post-invasion, the decidua reverses the integrin 

repertoire from α6β4-positive and α5β1-negative 

(45). 

4. TROPHOBLAST INVASION: A PSEUDO-

MALIGNANT PHENOTYPE 

Trophoblast cells display a physiologically 

regulated invasive behavior (31,32) in a 

temporospatial fashion that draws parallel to cancer 

invasion. However, this pseudo-malignant behavior 

is transient and restricted to first-trimester pregnancy 

and uterine endometrium (14). Thus, many 

similarities exist between blastocyst implantation and 

cancer cells. Though all the factors that contribute to 

the transient autoregulated tumor-like pseudo-

malignant phenotype of human trophoblast cells are 

yet to be identified (44), still a considerable amount 

of information in this direction is available derived 

both from human as well as rodent models. This 

physiological in-build check-in system is often 

underrated. It becomes relevant when trophoblast 

incursion into the endometrium becomes 

unregulated, leading to life-threatening complications 

affecting both the mother and child (50). Thus, human 

trophoblast cells display extreme phenotypes with an 

unparalleled capacity to proliferate, migrate, and 

invade (Figure 2). On the other hand, these cells also 

slow down the tumor-like attributes by the end of the 

second trimester into a non-motile, non-invasive 

state, thereby rendering it a pseudo-malignant tumor 

(51). EMTness of the trophoblast is thus a transient 

phenomenon. 

5. MULTIPLES ROUTES OF TROPHOBLAST 

INVASION: INVADING THE UTERINE 

ENDOMETRIUM AND REMODELING THE 

MATERNAL VASCULATURE 

Besides invading the maternal decidua, 

trophoblasts also display multiple invasive routes. 

EVT that invades the endometrium in the first 

 
 

Figure 1. Possible combination of the subunits α and β, their specific 

ligands on different cell types. RGD: Arg-Gly-Asp. 
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trimester is essentially the interstitial trophoblast 

(iCTB) and is believed to be a lineage-committed 

stage (52). It ensures adequate blood and nutrient 

supply to the growing fetus. Any disruptions in this 

process result in a plethora of pregnancy-related 

complications, such as preeclampsia, intrauterine 

growth restriction (IUGR), or recurrent abortion (53). 

After the invasion into the decidual bed (54,55) i.e., 

the endometrium, the migrating EVT cell populations 

are influenced by growth factors cytokines and 

hormones secreted by the decidual stromal cells and 

the decidual immune cells (macrophages, uterine NK 

(uNK) cells ) (53-55) thereby establishing a regulated 

cross-talk between immune components and the 

trophoblast cells (Figure 3). Apart from the paracrine 

influence by the cytokines on trophoblast invasion, 

oxygen saturation in the placental bed seems to be 

another crucial determinant orchestrating this 

process in vivo (56). The role of oxygen during 

embryo implantation is not completely understood., 

however it is accepted that maintainance of a strict 

oxygen dynamics in the feto-placenta milieu is a 

critical determinant for successful pregnancy. Hence 

a delicate titration of oxygen is the key for a 

uneventful pregnancy outcome. The endovascular 

subpopulation of the cytorophoblast seems to 

orchestrate uterine blood flow through the 

remodeling of maternal spiral arteries (57). This part 

of the process involves the regulation of oxygen 

levels at the feto-maternal interface via trophoblast-

mediated plugging of uterine arteries upto 8-10 

weeks of gestation (56, 153). This is essentially to 

maintain a low oxygen tension (2-3%) . This is 

followed by endovascular trophoblast mediated 

remodeling of maternal vessels (57) to enable a rapid 

uninterrupted blood flow when these trophoblast 

plugs are dissolved. This raises the oxygen tensin 

upto 6-8% after 12 weeks. Defects in these 

processes can cause severe pregnancy-related 

complications like preeclampsia and intrauterine 

growth retardation (IUGR), thereby severely 

compromising with the growth and development of 

the fetus (58). Poor perfusion resulting from 

incomplete uterine artery remodeling also results in 

inadequate nutrition for the developing fetus (57). 

This in turn trigger a stress response that seems to 

have a profound influence in the postnatal life. 

Studies also found that babies delivered from 

females with elevated stress markers pose a high risk 

of developing adult-onset hypertension, 

cardiovascular complications, and type 2 diabetes 

mellitus (18,22,59,60). Due to the close association 

between maternal stress with poor pregnancy 

outcome and fetal complications that are arising due 

to this stress (59) an in-depth understanding of 

mechanisms regulating trophoblast invasion need to 

be elucidated. 

6. ENDOVASCULAR TROPHOBLAST: 

REMODELING MATERNAL VASCULATURE 

BY INVADING TROPHOBLAST 

Early embryo mostly develops under 

hypoxia (low oxygen tension) with about 2-3% 

oxygen tension upto first 10 week . Under such 

conditions, the embryo implants and the 

trophectoderm, the outer layer of blastocyst, 

 
 

Figure 2. Invading trophoblast front of into maternal endometrium. 

 
 

Figure 3. Model of trophoblast invasion. PV = Placental villi, FV = 

Floating villi, AV = Anchoring villi, evCTBP= Endovascular 

cytotrophoblast, (Image reproduced with permission from Biorender 

: https://biorender.com) 

https://biorender.com/
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proliferates, forming the cytotrophoblastic shell, the 

early placenta (153) 

Trophoblast cells derived from the human 

placenta are programmed to proliferate, migrate, and 

invade the endometrium (16). In addition, these cells 

also modify and remodel the maternal vasculature, 

similar to that as been observed by tumors on blood 

vessels (Figure 4). Another differentiated type of 

trophoblast that originates from the trophoblast cell 

columns of the anchoring villi are the endovascular 

trophoblasts that originates from the CTB stem cell 

core (60). This endovascular trophoblast population 

mediates maternal spiral artery invasion. The 

vascular invasion begins during the first month of 

pregnancy with moderate to massive degenerative 

changes in the spiral vessel walls leading to 

endothelial hypertrophy, muscular regression, and 

the appearance of swollen cells (61-64). 

During the first trimester, the maternal 

uteroplacental arteries undergo a series of 

pregnancy-specific changes which are as follows: 1) 

apparent replacement of endothelium and media 

smooth muscle cells by invasive trophoblast, 2) loss 

of elasticity, 3) dilation of in-contractile tubes, 4) loss 

of vasomotor control and 5) free blood-flow. 

It is well-established that fetal trophoblast 

cells ensure their vascular connectivity to maternal 

blood vessels through vascular invasion. Incomplete 

or suboptimal vascular invasion is associated with 

common pathologies, such as pre-eclampsia and 

fetal growth retardation, and other pregnancy-related 

complications (65,66). Trophoblast cells that form the 

primary villi gradually mature into secondary and 

tertiary villi. This, in turn, leads to villous branching 

and vascularization. Villi are connected to the basal 

plate of the placenta. This gives rise to trophoblast 

cell columns. It is known that migratory 

subpopulations of trophoblast (Extravillous CTB) 

originate from these cell columns. Another 

differentiated trophoblast lineage that originates from 

the stem cell population is Endovascular trophoblast. 

Vascular invasion by tumor-like trophoblast cells is 

the outcome of cell migration and invasion. 

Trophoblast emerging out of trophoblast cell columns 

(these helps to anchor the floating villi to 

endometrium) can migrate collectively in a 

mesenchymal-like crawl expressing EMT markers. 

The endovascular trophoblast intravasate the blood 

or lymph vasculature. However, intravasation by the 

interaction of trophoblast cells with the vascular 

endothelium is yet poorly understood. It is speculated 

that endovascular trophoblast cells invade the lumen 

of uterine spiral arteries, eventually replacing the 

vascular endothelial ends of the blood vessels 

(intramural trophoblast) (60). This leads to the 

replacement of arterial elastic material with an 

extracellular matrix called the fibrinoid (67). The 

uniqueness of endovascular trophoblast invasion is 

the capacity of trophoblast cells to replace the arterial 

vascular endothelial cells to facilitate adequate 

uninterrupted blood flow towards the developing 

embryo (67). 

Maternal factors and fetal-derived 

trophoblast factors release cell adhesion molecules, 

such as integrins and matrix-degrading proteases 

(MMPs, secretory mediators like cytokines, growth 

factors, and hormones) (68). Eventually, enzymes 

released by the trophoblast cells degrade the ECM 

proteins, such as collagen IV, vitronectin, and 

fibronectin, to promote cell migration and invasion 

(69). Trophoblast cells express a variety of 

transcription factors related to development, 

maturation, and differentiation (70): Hand1, AP-2y, 

ETs-2, Mash2, Gcm1, Ascl2, and GATA2. Gcm1 

inhibits the expression of trophoblasts differentiation-

specific, helix-loop-helix (bHLH) transcription factor 

genes, while Hand1 and Mash2 are essential for 

placental development in mice (71-74). Hand1 

 
 

Figure 4. Hypoxia mediated activation of multiple signaling 

cascasdes in cancer and trophoblast cells. 
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promotes the differentiation of trophoblast giant cells 

in mice, which is essential for the maintenance of 

these giant cell precursors. Mash2 is downregulated 

as the cells differentiate along the invasive pathway 

(70). Thus, both EVT and as well as endovascular 

trophoblasts, display an extensive migratory and 

invasive phenotype similar to metastatic cancer. 

Furthermore, like cancer cells, the trophoblasts seem 

to co-opt tumor feeding vascular network to ensure 

that adequacy of blood can be maintained towards 

the feto-maternal pole. This phenomenon is 

supported by the initial hypothesis by Thompson et 

al. (75) that tumors acquire vasculature by 

incorporation of host tissue capillaries. The 

morphological evidence by Holash et al. suggested 

that the co-option of pre-existing blood vessels in 

human malignancies is a standard event during 

tumor growth (76). 

7. ROLE OF OXYGEN DURING 

TROPHOBLAST INVASION 

Oxygen tension is crucial for embryo 

development. Accumulating evidence suggested that 

the early placental (and embryonic) development 

occurs in a hypoxic uterus. Jauniaux et al. 

investigated 25 pregnancies, wherein the partial 

pressure of oxygen in the placenta was 2.5-fold lower 

than that in the decidua before 11 weeks of gestation 

(77). The trophoblast cells from early pregnancy that 

had formed plugs sealing the maternal artery were 

gradually loosened, thereby perfusing the developing 

placenta to maternal blood flow (77-79). However, 

even with mounting evidence of trophoblast 

occluding the arteries, few preliminary studies 

reported that all the arteries are not blocked, and the 

blood flow is uninterrupted (81-83). Nevertheless, it 

is typical for the placenta and fetus to develop in a 

hypoxic environment in the first trimester, and that the 

invading CTBs proliferate in vitro under this low 

oxygen tension. As the interstitial trophoblast 

emerging from the trophoblast cell columns invades 

into the uterus, they encounter an increased oxygen 

level, which in turn, triggers the proliferation and 

facilitates the exit from the cell cycle towards a 

differentiated phenotype thereby slowing down the 

invasion (10).  

7.1. A similar effect of hypoxia on 

trophoblast cells and cancer  

Early-stage pregnant human uteri showed 

embryos surrounded by a pool of trophoblast cells by 

microscopy. Hypoxia stimulates CTB proliferation, 

thereby differentiating in size between the embryo 

and the placenta. Although the oxygen-detection 

mechanism of the trophoblasts is not yet clarified, it 

is speculated that ROS might play a role (84-88). 

Under chemical-induced hypoxia, studies using 

trophoblast explants showed the involvement of 

several pathways with upregulated expression of 

hypoxia-inducible factor (HIF), resulting in EVT 

proliferation and outgrowth. Interestingly, in the 

presence of mitochondrial poison rotenone, explants 

showed inhibited EVT outgrow, implying that 

trophoblasts use mitochondria as oxygen sensors 

during pregnancy (84). 

HIF-deficient Placenta has numerous 

defects, including faulty lineage commitment, lack of 

fetal angiogenesis, and shallow invasion into 

maternal tissue (89). Similarly, hypoxia alters cancer 

cell metabolism and contributes to drug resistance 

(Figure 5). Hypoxia activates cell signaling networks 

in cancer cells, including the HIF, PI3K, MAPK, and 

NF-κB pathways (90,91). The response of cancer 

cells to hypoxia is complicated and depends on 

several key determinants primarily been the time of 

exposure, which determines cell fate: death or 

survival. While acute short-term hypoxia activates 

autophagy, cycling or even suboptimal hypoxia 

elevates the production of ROS, thereby promoting 

tumor cell survival and progression (92,93). In 

addition, hypoxia enhances tumor resistance to 

radiotherapy treatments (94-97) and activate EMT 

(98). 

 
 

Figure 5. Cross-talk between invading trophoblast and maternal 

immune system through soluble and cell surface mediators. 
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HIF1 plays a dominant role in the 

transcriptional regulation of hypoxia genes to 

facilitate the hypoxic adaptation of cancer cells (99). 

As shown previously, hypoxia has a profound 

influence on trophoblast function, orchestrating 

migration, invasion, apoptosis, gene expression, and 

proliferation (62,88,89,91). Recently, Zhu et al. 

investigated the role of ten-eleven translocation 

methylcytosine dioxygenase 1 (TET1) enzyme 

activity in hypoxic cancer cells and their effect on 

trophoblast function under 3% oxygen mimicking 

events in early placentation (100). Some studies 

showed that TET1 knockdown reduced the migration, 

invasion, and proliferation of JEG3 cells exposed to 

3% oxygen into trophoblasts. This observation 

reinforces the fact that trophoblast invasion behaves 

like a cancer invasion and is possibly under 

epigenetic control. Furthermore, Reza et al. reviewed 

recent developments in this area and summarized 

(Table 1) that the epigenetic machinery, including 

histone modifications, DNA methylation, and 

ncRNAs, orchestrate multiple aspects of trophoblast 

differentiation, migration, and invasion during 

placental development (101).  

8. EMT DURING CANCER INVASION 

An epithelial-mesenchymal transition 

(EMT) is the process during which a polarized 

epithelial cell, regularly interacting via its basal 

surface with the basement membrane, undergoes 

several morphological changes, thereby assuming a 

mesenchymal-like phenotype (102). This involves an 

enhanced migratory capacity, invasiveness, elevated 

resistance to apoptosis, and a greatly increased 

production of ECM components (103). During EMT, 

polarized epithelial cells assemble to form elaborate 

cell-cell adhesions, including adherens junctions and 

tight junctions, and are transformed into 

mesenchymal cell types (104). Three physiological 

types of EMT are observed: (1) EMT during 

embryonic development, (2) EMT during wound 

healing, and (3) EMT during cancer. 

There are, however, significant differences 

between physiological (developmental and wound 

healing) EMT and pathological EMT as seen in 

cancer. Developmental EMT involves not just cell 

motility. It is an orchestrated and coordinated process 

in response to physiological requirements guided by 

cell-cell and cell-ECM interactions as well as several 

soluble molecular factors of autocrine and paracrine 

in nature. Pathological EMT, on the other hand, is 

uncoordinated and unregulated, leading to loss of 

epithelial integrity, as seen in cancer(105). 

The significant aspect of EMT is its clinical 

application in cancer metastasis. EMT empowers 

tumor cells to avoid chemo and radiotherapy and 

develop resistance (106). Epithelial cells can lose 

their cell-cell adhesion under the effect of aberrant 

signaling pathways or reactivation of oncogenes and 

transform into motile and invasive mesenchymal 

cells. These cells then invade the ECM basement 

membrane and migrate to distant sites (107,108). A 

critical determining force during embryonic 

development and differentiation is the transition of 

cells from static to migratory behavior. During this 

Table 1. Epigenetic modulation affecting trophoblast invasion and differentiation 

Epigenetic marker; 

Histone modification 

Target (s) Model (s) Functional effect 

Species Type Differentiation Migration/invasion 

Acetylation 

  

H2A/H2B Ms TS   

H3K3 (Maspin) Hu PT,CL -  

H3K9/14 Hu CL  - 

Methylation 

  

H3K27me3 Hu Plc  - 

H4K20me3 Hu Plc  - 

H3K9me3 Ms ES  - 

Ribosylation Global Ms ES   

 Increase expression , Decrease expression (down regulation), Ms: Mouse, Hu: Human, TS: Trophoblast Stem cells; ES: Embryonic 

Stem cells; PT: Primary Trophoblasts; CL: Cell line; Plc: Placenta explant/tissue. Retrieved with permission from (101) 
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event, the cells oscillate between static and transient 

phenotypes (109). As mentioned before, these cell 

migrations are regulated processes. Aberrant and 

inappropriate activation of EMT, however, can lead to 

several tumor formations (102). An exciting feature of 

EMT is to investigate its execution and its delicate 

orchestration, mostly mediated by several soluble as 

well as ECM factors. 

Cells undergoing EMT can either move as 

a single cell or as cell clusters (110). The latter is a 

complex assembly of cells with a mosaic phenotype, 

few of which are epithelial and few as mesenchymal. 

Studies by Jolly et al. pointed out that cells can also 

attain a hybrid epithelial/mesenchymal (i.e., partial or 

intermediate EMT) phenotype, i.e., mixed epithelial 

(for example, adhesion) and mesenchymal (for 

instance, migration) properties, allowing the 

movement of the clusters (111,112). These cells can 

be found as circulating tumor cells (CTCs) in 

circulation, that avoid anoikis (anchorage-dependent 

apoptosis). This small cell clusters can metastasize 

efficiently than single cells (110,115). This finding 

indicates that the mesenchymal phenotype can 

protect from anoikis. Following intravasation and 

extravasation, cancer cells migrate to distant sites to 

colonize. Conversely, trophoblasts colonize in the 

uterine matrix (interstitial trophoblast), maternal 

blood vessels (endovascular trophoblasts), and 

maternal glands (endo-glandular invasion) (4). 

8.1. Physiological vs Pathological EMT 

Epithelial-mesenchymal transition (EMT) is 

a physiological process necessary to normal 

embryologic development EMT is a normal process 

necessary to the development of the body plan as 

part of organogenesis. Epithelial tissues are 

characterized by a strict apical-basal polarity, cell-cell 

junctions that allow forming sheet-like structures. 

EMT in wound healing and EMT during 

embryogenesis are physiological EMT that are 

important for maintaining homeostasis. 

Embryological example of EMT is seen during mouse 

embryo gastrulation that exhibits a downregulation of 

epithelial maker notably E-cadherin. Wound healing 

associated EMT is mediated through inflammatory 

cells and fibroblasts, which secretes inflammatory 

molecules. TGFβ is a master regulator of EMT and in 

the wound healing process. Moreover, other 

cytokines like IL6, IL8 also contribute to the EMT 

process (112,113). 

EMT can also be seen as a reversible 

transdifferentiation program whereby non-motile 

epithelial cells transform into migratory mesenchymal 

cells with enhanced cell survival attributes. This 

transformation is recognized by a loss of epithelial 

nature, followed by an increase in mesenchymal 

markers such as N-cadherin and vimentin (112-114). 

A battery of critical transcriptional factors 

like SNAI1, SNAI2, ZEB1, ZEB2, Twist, as well as 

several lncRNA (long non-coding RNAs) through the 

complex chromatin remodeling process, brings about 

epigenetic modifications that drive the EMT process. 

Signaling from most of these pathways converges to 

repress the expression of epithelial marker E-

cadherin, regarded as a ‘master’ regulator of EMT. 

Loss of E-cadherin gene somatically is found in 

several cancers such as breast cancer, gastric 

carcinoma. This is often associated with loss of 

epithelial characteristics and the acquisition of a 

highly invasive mesenchymal phenotype (112-114).  

9. TROPHOBLAST EMT AND PSEUDO-

MALIGNANCY 

Migratory EVT invades the uterine 

endometrium, loses the epithelial phenotype, and 

transit into a migratory and invasive mesenchymal 

phenotype (116). Unlike cancer, where cellular 

pathways are distorted from their normal state, 

trophoblast cells are non-cancerous (117). Although 

several studies were conducted on EMT from cancer, 

the cellular mechanisms regulating EMT in 

trophoblasts are poorly understood. Trophoblast cells 

are pseudo-malignant and share common features, 

such as hyper-proliferation, metastasis, and invasion, 

in addition to the expression of several typical 

receptors for growth factors, cytokines, hormones, 

and receptors (118,120). 

As emphasized before, although the 

placenta is just another healthy tissue, the 

trophoblastic cells, behave like pseudo-malignant 

cells. With the high proliferation index and lack of 

contact inhibition, these cells are the epitome of 
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“physiological metastasis” (121).  Numerous studies 

have elucidated that several oncogenes and proto-

oncogenes that transmit proliferative signals through 

cytokine and growth factor receptors are expressed 

by trophoblast cells. EGF-receptor and c-fos 

products may serve as prognostic factors for the 

aggressiveness of squamous cell carcinomas of the 

lung (122). Similarly, the expression of the proto-

oncogene-encoded proteins (c-erbB1, c-erb B2, c-

myc, c-fos) belonging to the c-erbB1 (HER1, ERBB1 

or EGFR) proto-oncogene is detected by the CTB in 

4- to 5-week Placenta (123,124). Furthermore, 

receptor tyrosine EGFR, erbB family of RTKs, linked 

to breast and lung cancers (125), is strongly detected 

in placental cells. Proto-oncogenes, encoding c-fms 

(CSF1R), c-met (MET), erbB2 (HER2/neu, ERBB2), 

and c-kit (KIT), and RTKs are expressed by both 

normal trophoblasts and cancer cells (Table 2). 

vCTBs express the stem cell factor (SCF) receptor 

(126) critical for cell proliferation and migration. Kim 

et al recently proposed that calcitriol exploits an ERK 

signaling pathway to promote EMT induction and 

MMP expression of EVTs. The detrimental role of 

cigarette smoke extract (CSE) on lung, head, and 

neck cancer is well-established (127). It also affects 

cell proliferation and migration with a reduction in E-

cadherin and upregulation of N-cadherin. In addition 

to events related to invasion, EVT differentiation into 

different lineages also involves EMT (128). 

Interestingly, EVT differentiation and 

trophoblast EMTiness seems to share molecular 

events with those of EMT observed during embryonic 

development, wound healing, and cancer metastasis 

(128), except been highly regulated and well-

orchestrated, unlike cancer. The EMT markers that 

are tightly associated with cancer are also found to 

be omnipresent in trophoblasts. Da Silva et al. 

reported that lentiviral-mediated overexpression of 

ZEB2 in trophoblast-derived cell lines resulted in an 

epithelial-mesenchymal shift in gene expression 

accompanied by a substantial increase in the 

invasive capacity of human trophoblast cells (129). 

ZEB1/2 involvement in trophoblast EMT 

demonstrated that miR-431 targets ZEB1 and inhibits 

the migration and invasion of trophoblasts. This 

phenomenon could have severe implications in 

preeclampsia, wherein trophoblastic invasion is 

compromised (129). 

9.1. Trophoblast EMT inducers 

The unregulated proliferation of cells 

accompanied by angiogenesis initiates cancer 

growth (130,131). In most cases, this is followed by 

the acquisition of an invasive phenotype leading to 

the breach in the basement membrane, followed by 

tumor dissemination and distant metastasis. The 

biochemical mechanisms that trigger this induction 

are under intensive research. 

EMT inducers include cytokines, growth 

factors, hormones, chemokines integrins, or others. 

This, in turn, stimulates the mitogen-activated protein 

kinases (MAPKs), focal adhesion kinase (FAK), and 

the phosphoinositide 3-kinase (PI3K)-Akt pathways 

that promotes hyperproliferation, differentiation, 

migration, and apoptosis (132,133). Members of 

transforming growth factor β (TGFβ) family regulate 

cell growth and proliferation in a dose- and time-

dependent manner. Also, TGFβ is a known inducer 

of EMT (134,135) and is believed to play an essential 

role in regulating trophoblast proliferation, 

differentiation, migration, and invasion (136-139). 

Table 2. Anatomical localization of oncogenes expressed in human placenta 

Populations erB-2 C myc P53 p21 RB References 

VCTB No No Faint Strong Moderate 119,120,122 

CTB cell column Faint No No Moderate Moderate 119,121 

Anchoring villi Moderate Faint Faint Moderate Moderate 121 

Interstitial trophoblast Moderate Moderate No Faint  Moderate 119,121,123 

Endovascular trophoblast Moderate Moderate No Faint Moderate 123 

STB Moderate Strong No  Faint  Moderate 119,120 

VCTB: Villous cytotrophoblast, CTB: Cytotrophoblast, STB: 
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TGFβ exists in three isoforms; of these, TGFβ1 and 

TGFβ2 are important in implantation. Results from 

our laboratory showed that TGFβ1 plays a crucial 

role in regulating trophoblast invasion by 

downregulating the MMPs and upregulating the 

protease inhibitors (TIMPs) (140,141). Besides, 

maternal decidua-derived TGFβ is a critical growth 

factor that plays a role in controlling trophoblast 

invasion. It has been shown that TGFβ1 activity was 

mediated via transcriptional factors SNAIL and 

TWIST (142). 

In addition to TGFβ1, epidermal growth 

factor (EGF) belongs to the human epidermal growth 

factor receptor (HER) family (143) also induces EMT 

and is associated with the proliferation of several 

human cancers via multiple signal transduction 

pathways (Figure 6) (158,159). The family constitutes 

HER-1, HER-2, HER-3, and HER-4, also called 

ErbB1, ErbB2, ErbB3, and ErbB4, respectively. 

Secreted by maternal decidua as well by trophoblast 

cells, EGF and EGFR1 are abundantly detected in 

the early invasive placenta. Also, during EVT 

formation, cells downregulate EGFR1 and induce 

ERBB2 (also termed HER-2/neu) similarly to tumor 

cells (144). Previous studies demonstrated EGF-

induced invasion and cell migration in villous explant 

cultures and primary CTBs (145). 

9.2. Role and regulation of trophoblast 

proteases 

MMPs and TIMPs coordinate the 

breakdown and remodeling of the basement 

membrane and ECM in the physiological and 

pathological situations. Intriguingly, a balanced 

stoichiometry of MMP-TIMP system plays an 

essential role in regulating the EVT invasion as well 

as subsequent placentation (146-148). 

The regulation of trophoblast invasion is 

multidimensional regulated by cytokines, hormones, 

local acting substances, and growth factors secreted 

by decidua. Also, trophoblasts modulate the MMP 

secretion of CTB (140-149). Bischof et al. reported 

that MMP-9 secretion by CTB is a prerequisite for 

Matrigel invasion and that putative AP1 sites are 

present within MMP9 promoters (151). 

Maternal uterus and uterine-derived 

factors, as well as the microenvironment, also 

regulate trophoblast invasion by preventing the 

 
 

Figure 6. Pleiotropic function of TGF-beta on EMT. 
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excessive breakdown of basement membrane 

components by trophoblast-derived MMP2/9 and 

serine protease (uPA) (Figure 7). The decidua-

derived TGFβ induces TIMP both in the decidua and 

the trophoblast, thereby controlling the invasion of 

trophoblasts (140) both spatially and temporally 

throughout pregnancy. Thus, a gradual but definite 

decline is observed in the invasiveness of the 

trophoblasts with increasing gestational age. 

10. SUMMARY 

A successful pregnancy is the outcome of 

a delicate balance, and synergistic dialogue 

between maternal and fetal compartments 

Placental trophoblasts are pseudo-malignant in 

nature with a temporospatial dynamics. During 

placentation, these trophoblast cells undergo an 

elaborate and complex differentiation program that 

leads to lineage differentiation into cells of different 

functions and destiny. EVT invasion leads to a 

phenotypic and biochemical transition, thereby 

acquiring an EMT phenotype before these invasive 

cells enter the uterine endometrium. Endovascular 

trophoblast invades and remodels the maternal 

blood vessels, whereas the endoglandular 

trophoblast invades the maternal endocrine glands 

(151). All these different modes of trophoblast 

invasion closely mimic cancer invasion and 

metastasis, thereby providing a platform to 

compare between the two systems.  

The similarity between cancer EMT and 

trophoblastic EMT is fascinating. However, an in-

depth understanding of the signaling pathways 

underlying the trophoblast EMT and to decipher their 

mechanistic details will give researchers an 

additional clue to understanding the mechanism of 

cancer invasion and metastasis in greater detail. 

Here we have an excellent self-regulating self-limiting 

system that is mechanistically so similar to a 

malignant tumor yet the elements of regulation which 

is missing in a tumor. Apart from this, understanding 

trophoblast invasion and EMT may offer novel 

strategies for targeted therapy in medical 

emergencies arising out of different placental 

pathologies like preeclampsia and FGR. 

Further interestingly in contrast to the tumor 

microenvironment, the maternal uterine endometrium 

seems to play a crucial role in restricting the 

trophoblast invasion with a spatiotemporal dynamic, 

a feat that is not observed in tumors. It is speculated 

that placental bed giant cells contribute to the lineage 

commitment and terminal differentiation of the 

migrating trophoblasts, thereby acting as a natural 

barricade (152-154). Trophoblast giant cells either 

contain two diploid nuclei (BNCs) or multiple nuclei 

(human placental bed GCs) or single nuclei with 

amplified DNA content (rodent and rabbit GCs) as 

part of the endo-duplication process. GC/BNCs 

exhibit reduced migration or invasion capacity while 

upregulating the production of steroid hormones and 

 
 

Figure 7. Tempo-spatial regulation of trophoblast invasion by MMPs and their inhibitors. 
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other synthetic activities (154). In mice models, 

homozygous mutations in trophoblast-specific 

transcription factors, such as Hand1, Mash-2, I-mfa, 

or GCM1 regulate the induction, maintenance, or 

differentiation of distinct placental trophoblasts (152). 

Further invading trophoblasts encounter a 

gradual -increase in oxygen tension as it inches close 

to the maternal vasculature within the endometrium 

(153). This increase in oxygen is believed to play an 

important role in EVT differentiation that occurs 

during the first trimester. This involves several 

signaling pathways, including those acting through 

hypoxia (HIF), the nutrient sensor (mTOR), and the 

endoplasmic reticulum stress-induced unfolded 

protein response pathway. A fine-tune regulation of 

this process is fundamental for a successful 

pregnancy outcome. Even a slight disruption in this 

delicate balance contributes to several pregnancy-

associated pathologies (155-157). For example, the 

shallow invasion is a characteristic feature of 

preeclampsia and FGR, while abnormal deep EVT 

invasion is associated with placenta 

accreta/increta/percreta, and uncontrolled invasion 

by EVT is associated with choriocarcinoma (58-65). 

New insights on trophoblast invasion, its 

EMT switch as well as pseudo-malignant behavior 

has kindred interest for a better understanding of 

such a crucial and a unique system. A thorough 

understanding of the transient pseudo-malignant 

trophoblast invasion process along with its finely 

controlled EMT program is crucial in our 

understanding of cancer invasion and metastasis 

besides addressing its essentialities in relation to 

embryo implantation and pregnancy. Given the fact 

that several pregnancy-associated pathologies result 

from an outcome of defective feto-maternal cross-

talks, it is of prime importance to understand this 

process such that clinical intervention can be initiated 

during a crisis, thereby improving pregnancy 

outcome and reducing fetal mortality. 
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