算法学习笔记(3)-二分查找

本文深入解析二分查找法的原理与应用,包括简单实现、处理多值情况的二分查找+小范围搜索策略、递归实现及时间复杂度分析。通过具体代码示例,帮助读者理解并掌握高效查找算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、二分查找法

1.1、简单介绍

二分查找法(binary search)是一种高效的查找算法,当需要在一段有序的数据中(升序或者降序)中查找某个数据时,如在一个形如1,2,3,4,···,99,100的数组中判断60是否存在,最简单的方式就是遍历判断:

for(int i = 0;i < array.length;i ++){
	if(array[i] == 60){
	 	System.out.println(“存在”);
	}
}

对于100个数据来说,最坏的情况就是查找比对100次,但是随着元素的扩充,查找的时间会越来越长,比对的时间也会越来越长,所以这时,出现了二分查找法:
每次都“猜测”一个数据范围段中的中间值,如果这个值比我们需要查询的数大,那么说明我们需要的值在这个中值的左边区域,即将查找的范围缩小的一半,同理,如果这个中值小于我们所需的查询值,那么我们要查的值就在右半部分,通过这种思想,每次查询都能排除掉1/2的数据,这就是二分查找法。

在这里插入图片描述

1.2、简单实现
 public class BinarySearch {

    public static void main(String[] args) {
        int[] arr = {5,13,19,21,37,56,64,75,80,88,92};
        binarySearch(21,arr);
    }

    public static void binarySearch(int key,int[] array){
        int lo = 0;
        int hi = array.length - 1;
        while (lo < hi) {
            int mid = lo + (hi - lo) /2;
            int midValue = array[mid];
            if ( midValue > key) {
                hi = mid - 1;
            } else if (midValue < key) {
                lo = mid + 1;
            } else {
                System.out.println("find\t"+key+"\tin\tindex\t"+i);
            }
        }
    }
}

// find	21	in	index	3

上面的二分查找算法貌似已经可以完成任务了,它快速地找到了21所在的索引为3,但是如果出现多值的情况,譬如21这个值在这个有序数组中存在两个,那么又如何找到它的所有索引呢?

博主想用的方法是"二分查找+小范围遍历",也就是通过二分查找快速地确定某一个key所在的位置,然后在定义由这个key延展开的左右指针去小范围搜索这个key,如果有的话,告诉我们它的位置,这样就可以完成多值条件下的查找了。

1.3、二分查找+小范围搜索
public class BinarySearch {

    public static void main(String[] args) {
        int[] arr = {5,13,19,21,21,21,21,37,56,64,75,80,88,92};
        binarySearch(21,arr);
    }

    public static void binarySearch(int key,int[] array){
        int lo = 0;
        int hi = array.length - 1;
        while (lo < hi) {
            int mid = lo + (hi - lo) /2;
            int midValue = array[mid];
            if ( midValue > key) {
                hi = mid - 1;
            } else if (midValue < key) {
                lo = mid + 1;
            } else {
                //将lo和hi指向key的左右范围内,确定是否只有一个key
                for (int i = mid - 1; i >= 0&& array[i] == key; i--) {
                    System.out.println("find\t"+key+"\tin\tindex\t"+i);
                }

                System.out.println("find\t"+key+"\tin\tindex\t"+mid);

                for (int j = mid + 1; j <= hi&& array[j] == key; j++) {
                    System.out.println("find\t"+key+"\tin\tindex\t"+j);
                }
                return;
            }
        }
    }
}

// find	21	in	index	5
// find	21	in	index	4
// find	21	in	index	3
// find	21	in	index	6
1.4、二分查找的递归实现
public static Integer binarySearch(int[] a, int target, int left, int right) {
        if (left > right) return null;
        int middle = left + (right - left) / 2;
        if (target > a[middle]) {
            //右半部分递归找
            return binarySearch2(a, target, middle + 1, right);
        } else if (target < a[middle]) {
            //左半部分递归找
            return binarySearch2(a, target, left, middle - 1);
        } else {
            return target;
        }
    }

二、题外话:大O表示法

大O表示法是用以估算算法的时间复杂度的一种方法,它用符号O(N)来表示算法执行时间,其中N是一个和元素项相关的表达式的取最高阶,忽略掉了常数项。比如查找长度为10的数组中的某一项时,最多需要查找10次;当长度为100时,最多需要查找100次,假如每一次查找需要消耗时间为k,那么算法执行时间t和数组长度的关系可表示为 t = kn,其中k是常数,n的最高次为1,可不写,那么用大O表示法表示其时间复杂度为O(n);
而二分查找法的时间复杂度可以表示为O(logn),其中n为元素数;
在这里插入图片描述
用大O表示法表示的时间复杂度,O(1)表示的是常数时间操作,这是算法最理想的一种情况,但是绝大多数算法都无法达到这样的效率;二分查找法是时间复杂度为O(logn),算法的执行时间和元素数符合对数增长,是一种很好的情况;而最不理想的情况就是O(n^2)这类的指数型增长了。

在这里插入图片描述

2.1、二分查找法快速估算

使用二分查找法时我们可以发现一些规律,如图
在这里插入图片描述
在这里插入图片描述
即二分查找法的范围r和查找次数s可以用对数函数s = log2(r)来表示,比如在100个数据中查询一个数据吗,最多需要log2(100) <=7次。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BoringRong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值