[第九届蓝桥杯省赛C++B组]乘积最大

本文解析了第九届蓝桥杯省赛C++B组的一道题目,该题要求从N个整数中选出K个数使乘积最大,详细介绍了算法思路与实现代码,包括如何处理负数和避免整型溢出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源:第九届蓝桥杯省赛C++B组

算法标签:贪心

题目描述:

给定 N 个整数 A1,A2,…AN。

请你从中选出 K 个数,使其乘积最大。

请你求出最大的乘积,由于乘积可能超出整型范围,你只需输出乘积除以 1000000009 的余数。

注意,如果 X<0, 我们定义 X 除以 1000000009 的余数是负(−X)除以 1000000009 的余数,即:0−((0−x)%1000000009)

输入格式

第一行包含两个整数 N 和 K。

以下 N 行每行一个整数 Ai。

输出格式

输出一个整数,表示答案。

数据范围

1≤K≤N≤1E5,
−1E5≤Ai≤1E5

输入样例1:

5 3
-100000
-10000
2
100000
10000

输出样例1:

999100009

输入样例2:

5 3
-100000
-100000
-2
-100000
-100000

输出样例2:

-999999829

思路

n 一共有n个数
k 一共选k个数
我们要在n个数当中选择k个数使得乘积最大

if n==k 所有的数字都要被选择,那么答案就是n个数字相乘
if n<k 不合法
if n>k
  if k%2 == 0
    如果负数为偶数个,负负得正,答案必定是正数
    如果负数为奇数个,则总有落单的负数,那我们只选择偶数个最大的负数,答案必定是正数
  if k%2 == 1
    如果所有数字都为负数,那么答案肯定就是负数
    如果起码有一个正数,那我们把单独的整数拿出来,k - -,此时k转换为了奇数,回归到前面的式子进行解决


我们可以发现,除了k是 奇数 且 所有数字都为负数 的情况是负数,其他情况下都可以转换为正数

在负数特殊情况下,我们要确保整个数尽可能小,得到的答案就相对较大

其他情况下,我们从两边找最大值a[l]*a[l+1],a[r]*a[r-1]进行乘积。

代码

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;

const int N=1E5+10,mod = 1000000009 ;
typedef long long LL;
int a[N];
LL res=1;

int main()
{
    int n,k;
    cin>>n>>k;
    
    for(int i=0;i<n;i++)cin>>a[i];
    
    sort(a,a+n);
    
    int sign=1;
    if(n==k){for(int i=0;i<n;i++)res*=a[i];}//n==k时
    else 
    {
        int l=0,r=n-1;
        if(k%2)//奇数情况
        {
            res=a[r--],k--;
            if(res<0)sign=-1;//唯一的全负状况 取最小
        }
        while(k)//转化为偶数状态处理
        {
            LL ll = (LL)a[l]*a[l+1],rr=(LL)a[r]*a[r-1];
            if(ll*sign>rr*sign){res=ll%mod*res%mod;l+=2;}//左右两边哪个绝对值大就选哪个 全负数状态相反
            else {res=rr%mod*res%mod;r-=2;}
            k-=2;
        }
    }
    
    cout<<res;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俺叫西西弗斯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值